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Abstract

The growing disparity between processing and memory speed, coupled with increasing data
demands, has led to memory accesses being a bottleneck for many modern workflows. An
example are sorting algorithms, which are often designed around the constraints set by memory
subsytems. In-memory processing (also known as processing in memory, PIM) is an umbrella
term encompassing several approaches which offload computational tasks to accelerators in or
near the memory itself. In PIM systems designed and manufactured by UPMEM, traditional
dynamic random-access memory (DRAM) modules are augmented with general-purpose pro-
cessors called DRAM processing units (DPUs). These are located next to the memory banks
themselves, whereby high memory access speed is accomplished. An UPMEM-based PIM
system may contain thousands of DPUs, each capable of additional thread-level parallelism.
Although designed for general use, the DPU architecture does come with limitations to its
computational prowess.

The scope of this thesis is the design, implementation, and evaluation of sorting algorithms
which run on a single DPU. For several sequential and parallel sorting algorithms, we document
the engineering process and adaptations to the merits and shortcomings of the DPU architecture.
We find that sorting is a suitable task for a DPU, which can be sped up nearly ideally through
multithreading. This paves the way for more large-scale sorting algorithms which run on
multiple DPUs.
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Chapter 1.

Introduction

For decades, processor and memory technology have developed in opposite directions. In case
of processors, particular attention has been paid to speed, whereas it has been capacity for
memory. As a consequence, the performance of a processor core has grown by up to 52 % year
after year, whilst the latency of dynamic random-access memory (DRAM), for example, has
been improving only by 7 % (see Fig. 1.1). The improvements in bandwidth, though not as bad
as those in latency, could not keep up with processor improvements as well. The emergence of
multicore architectures has aggravated the discrepancies. Thus looms the memory wall which
gets hit when a processor is forced to idle whilst waiting for data. Techniques like prefetching
and multi-level caches have been developed to defer the impact, and yet, idle times make up
as much as 60% of the total runtime [32]. Additionally, despite latency improvements being
partially slowed down due to energy concerns [19, p. 130], memory transfers are responsible for
much of the total power consumption of a system, accounting for 63 % of the total in consumer
devices [6] and 40% in scientific applications [25].

One approach to tear the memory wall down is in-memory processing (also processing in
memory, PIM), which is further divisible into processing using memory and near-memory
processing [18, 32, 34]. Processing using memory (PuM) denotes analogue computation through
repurposing existing structures within a memory device, like memory storage cells or and
peripheral circuitry. This allows mainly for simple bitwise operations but also for random
number generation. Even vector-matrix multiplication is possible in memory built from crossbar
arrays, enablingmore complex tasks like signal processing, compression, and image filtering [28].
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Figure 1.1. Sketch of the divergent development of the latency of a single DRAM bank (bottom)
and the average time difference between memory requests by a single processor core (top), with the
performance of the year 1980 as baseline. [19, Figure 2.2]

1



Chapter 1. Introduction

Near-memory processing (PnM) denotes digital computation through additional compute
engines close to or in the memory device. The memory latency improves because of the
proximity to the storage, and the bandwidth scales naturally with the size of the memory.
Such separate circuitry allows for more complex applications like weather modelling [40] or
personalised recommendation [24].

The PnM solution offered by UPMEM augments regular DRAM modules by adding general-
purpose DRAM processing units (DPUs), of which there may be thousands in a fully equipped
system. The parallelism potential is elevated by each DPU being capable of thread-level parallel-
ism. Next to the memory of a DRAM module, to which is also referred as Main RAM (MRAM),
each DPU possesses a private scratchpad memory called Working RAM (WRAM) which is smal-
ler but faster than the MRAM. Despite the rather limited computational prowess of individual
DPUs, the architecture has sparked interest [18, 21, 32, 34] and promising performance in ap-
plications like sparse matrix-vector multiplication [16], time series analysis [18], reinforcement
learning [17], deep-learning recommendation models [7], and compression [33] make further
investigations worthwhile.

One possible new application for PIM is sorting. Sorted data is crucial in many applications, as
it allows to search in logarithmic time instead of linear time through a binary search, determine
whether a data set is a subset of another one, delete duplicates trivially, or impose a topological
ordering on a directed acyclic graph of dependencies for time-forward processing. Consideration
of data access patterns plays a vital role in designing sorting algorithms, and the limitations of
the various kinds of memory have led to quite sophisticated solutions.

First, Chapter 2 gives a basic overview of the UPMEM hardware and of sorting algorithms in
general. Chapter 3 focuses on sequential sorting algorithms for small inputs which fit into the
WRAM. Then, Chapter 4 turns to sequential and parallel sorting algorithms for large inputs
which are stored in the MRAM because of their size. Chapter 5 concludes this thesis by offering
a summary of our findings and giving an outlook on future developments. Appendices A and B
contain further measurements in support of Chapters 3 and 4, respectively.

We restrict ourselves to measuring performance on 32-bit and 64-bit integers only. Taking
our cue from Axtmann et al. [1], we benchmark our sorting algorithms against the following six
input distributions:
Sorted The numbers from 0 to 𝑛 − 1 are generated in ascending order.
Reverse Sorted The numbers from 0 to 𝑛 − 1 are generated in descending order.
Almost Sorted The numbers from 0 to 𝑛 − 1 are generated in ascending order. Then, ⌊√𝑛⌋

many random pairs are drawn and swapped sequentially. Pairs may not be disjoint.
Zero-One Every element is set independently to either 0 or 1, each with a probability of 50%.
Uniform Every element is drawn independently and uniformly from the range [0, 231 − 1].
Zipf’s Every element is drawn independently from the range [1, 100], with each value 𝑘 being

drawn with a probability proportional to 1/𝑘0.75.
The range of possible values in the uniform input distribution is motivated by a simplification
of the input generation. There is no impact on the performance on 64-bit integers by their
33 most significant bits being always set to zero. The program code can be downloaded from
https://github.com/s9770652/pim-sorting.
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Chapter 2.

Prerequisites

This chapter lays the necessary groundwork for understanding the design principals of our
proposed algorithms. Section 2.1 serves as an introduction to in-memory processing on an
UPMEM system mainly in terms of hardware, but major implications for designing code are
also covered. Section 2.2 establishes necessary terminology in the context of sorting algorithms.
In addition, an insight into some modern sorting algorithms and the reasons for their high
performance is provided, along with a discussion on the applicability of the methods to the
UPMEM architecture.
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Chapter 2. Prerequisites

2.1. The UPMEM Architecture

Section 2.1.1 provides a short conspectus of the composition of such a system, and Section 2.1.2
presents the components of an individual PIM chip. Section 2.1.3 covers the instruction pipeline,
which differs in key aspects from that of a modern central processing unit (CPU), whilst
Section 2.1.4 is concerned with the instruction set architecture, as acquaintance with it helps
frequently in identifying optimisation potential. Finally, Section 2.1.5 gives an insight into
developing programs for an UPMEM system. The four sources for this section are a white
paper by UPMEM [43], a talk given by UPMEM’s founder, Fabrice Devaux, at the 31st Hot Chips
Symposium [11], the official documentation of the UPMEM toolchain [44], and an extensive
study by Gómez-Luna et al. [18]. For the sake of clarity, most statements will not be given a
specific source.

2.1.1. Overview

The PIM capabilities are realised on modules of regular random-access memory (RAM) or, to be
more precise, on Dual In-Line Memory Modules (DIMMs) of Double Data Rate 4 Synchronous
DRAMwith a transfer rate of 2400MT/s (DDR4-2400 SDRAM). Therefore, PIM DIMMs can act
as replacement for DIMMs already present in existing systems without repercussion for tasks
which do not rely on in-memory processing. A PIM DIMM consists of two ranks, each with
eight PIM chips, that is modified DRAM packages, which contain the memory banks. Each PIM
chip, in turn, contains eight DRAM processing units (DPUs), so there are 128 DPUs per DIMM.
Each DPU is closely situated to one of the memory banks of size 64MiB. Due to the spatial
proximity to its memory bank, a DPU is capable of rapidly accessing data stored on a DIMM.

Depending on the model1, a DPU possesses either 16 or 24 hardware threads, whose software
abstraction are called tasklets. Taklets work independently from each other, meaning programs
can use different control flows to process different data. An UPMEM system can boast up to
20 PIM DIMMs, setting the total count of DPUs to 2560 and of tasklets to 40 960 or 61 440,
respectively. Tasklets of the same DPU communicate using shared memory, whereas DPUs
have no direct way to communicate or even share data with each other. Instead, inter-DPU
communication is implemented by the host CPU fetching data from one DPU and sending it
to another one. Hence, for a task to run well on a PIM system, it not only needs to frequently
access the RAM, it also needs to consist of many, fairly independent subtasks. If such a task
is indeed on hand, speedups well in the double digits for memory-bound tasks, compared to
an execution on a CPU or graphics processing unit (GPU), are possible (compare Gómez-Luna
et al. [18]). Next to a faster execution, a gain in power efficiency is also to be expected, since data
transfers between the RAM and a host CPU drive the power consumption in regular systems
significantly; UPMEM claims a tenfold increase of the power efficiency.

The retention of the general DDR4 architecture comes at a price. A DPU is manufactured
using only three layers of silicon, resulting in transistors three times slower than other transistors
of the same process node. Also, their density is considerably reduced. In consequence, DPUs
are not suitable for computing-intensive tasks (compare also Gómez-Luna et al. [18]).

1. There are two DPU models, v1A and v1B. The former runs at 350MHz and is equipped with 24 threads, whereas
the latter runs at 400MHz and is equipped with 16 threads. Measurements for this thesis were conducted on v1A.
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Figure 2.1. Schematic depiction of a PIM chip. The bright components are part of a standard
DRAM package, the dark components are exclusive to PIM chips. [11]

2.1.2. The Structure of a PIM Chip

A PIM chip (Fig. 2.1) contains eight DRAM banks of 64MiB each. These are connected with a
regular DDR4 interface through which a host CPU can access the memory. Next to each DRAM
bank, there is a DPU with a direct connection to it, thus bypassing the DDR4 interface. An
access to the memory bank is also called a direct memory access (DMA) and is handled by the
DMA engine. Furthermore, the eight DPUs are connected with a special control interface which,
in turn, is connected with the memory controller. This enables the host to communicate with
the DPUs but it does not allow DPUs to access DRAM banks other than their own. It is not
possible for a DPU and the host to access a DRAM bank concurrently.

DPUs contain several major and minor memories. The memory of the DRAM bank is also
referred to as Main RAM (MRAM). It is by far the largest memory of a DPU and typically holds
the input provided by the host and the output calculated by the DPU. However, the MRAM is
also the slowest memory, for each DMA comes with a latency of dozens of cycles. Also, despite
the theoretical peak bandwidth of 2.2 GiB/s of DDR4-2400, the empirically measured bandwidth
of a DMA is 0.6 GiB/s on a v1A DPU.

The Working RAM (WRAM) is based on faster but more expensive and less dense static RAM.
For this reason, the WRAM is far smaller, comprising only 64KiB, yet its latency is practically
zero, and the measured bandwidth for a v1A DPU reaches 2688MiB/s. A typical workflow
is, hence, to load input data from the MRAM into the WRAM, process it, and write output
data back into the MRAM. The WRAM also contains the stacks of the tasklets, where their
local variables are stored. Global variables which are visible to every tasklet may be stored
in the WRAM or MRAM, however, any MRAM variable can be processed only when placing
it temporarily in the WRAM (see Section 2.1.4). Unlike a CPU, there is no multilevel cache
hierarchy with a coherence protocol moving data automatically, and it is in the responsibility
of the programmer to ensure that critical data are stored in the WRAM. Still, there is a small
number of automatically managed registers. The driver allows the host to access a specific
section of the WRAM only if the data has been specifically designated for this purpose, and
such transfers are slower than transfers involving the MRAM.
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Chapter 2. Prerequisites

Tasklet Cycle
21 22 23 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0 J K L/A M/B N/C D E F G H I J K L/A M/B N/C D E F G
1 I J K L/A M/B N/C D E F G H I J K L/A M/B N/C D E F
2 H I J K L/A M/B N/C D E F G H I J K L/A M/B N/C D E
3 G H I J K L/A M/B N/C D E F G H I J K L/A M/B N/C D

Figure 2.2. An excerpt from cycles 21 to 39 of an exemplary pipeline with four threads which were
issued one cycle apart. The fourteen letters A to N represent the fourteen stages of an instruction.
Due to the interleave, every pair of subsequent, final stages N is eleven cycles apart.

Whilst the WRAM typically holds the data which is processed, the Instruction RAM (IRAM)
contains the program (also called kernel) which a DPU executes. The IRAM has a size of 24 KiB
which translates to a maximum of 4096 instructions out of which a kernel has to be built.2 This
memory can be modified only by the host, as the DPU can only read it in usually automated
processes.

Next to these major memories, there is also a 256 bits large atomic memory whose bits are
accessible in a thread-safe way, allowing for mutual exclusion, barriers, and similar. Furthermore,
there is a 64 bits large run memory through which individual threads can be booted, suspended,
and resumed by setting the corresponding status bit.

2.1.3. The Instruction Pipeline

Instructions are executed using pipelining, that is, instructions are divided into several stages
which are performed one after another, with each stage taking exactly one cycle. Once a stage
has been completed, the respective transistors are free to process the next instruction even
if the previous instruction has not reached the end of the pipeline yet. The pipeline is scalar,
meaning there is at most one instruction per stage at any time, and executes in order, meaning
instructions are statically scheduled and executed in the order as indicated by the compilation.
Threads can have only one scheduled instruction in the pipeline. However, all threads use
the same pipeline, so a nominal throughput of one instruction per cycle is achieved if enough
threads are active for all stages of the pipeline to be continuously performed (Fig. 2.2). The
pipeline consists of fourteen stages such as the fetching of the instruction from the IRAM, the
reading of the operands from the registers, and the performing of the operation itself while
accessing the WRAM if needed. The last three stages can be interleaved, that is performed in
parallel, with the first three stages. Thence, the pipeline length is effectively reduced to eleven,
meaning only eleven active threads are needed to exploit the computing capabilities of a DPU
in full capacity.

Nevertheless, having more than eleven threads active is not detrimental to the throughput,
which remains at one instruction per cycle, it only means that individual threads are put into
a queue and have to wait for some cycles. This not only may make some parallel task easier

2. In fact, a v1B DPU can hold 2 KiB of data less in its MRAM and 128 instructions fewer in its IRAM since parts of
those are ‘reserved for production and quality control purposes.’ [44, Introduction – DPU chip characteristics]
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to program, it can result in a performance gain when DMAs are involved. DMAs are mainly
executed by the autonomous DMA engine. Whilst a thread is performing a DMA, it is suspended
and removed from the pipeline, freeing a slot up. Therefrom, the employment of more than
eleven threads allows to hide DMA latency by keeping the pipeline full.

As concluding remark, it shall be mentioned that there are circumstances under which
the execution of an instruction takes twelve cycles instead of eleven. [44, Instruction Set
Architecture – Efficient scheduling] This is related to the identifiers of the registers used,
however, the compiler usually manages to evade these circumstances. Hence, one can regard a
DPU as a unit-cost machine where each instruction takes eleven cycles to complete with the
seldom exception of some taking twelve cycles and with the exception of DMAs. Counting
instructions is, therefore, a valid technique to assess the performance of some piece of code.

2.1.4. The Instruction Set Architecture

Each thread owns several private general-purpose registers labelled r0 to r23 which can hold
arbitrary 32-bit values and are freely readable and writeable by the respective thread. An
even Register r(2i) and subsequent odd Register r(2i + 1) form the 64-bit Register d(2i).
Furthermore, there are the read-only Registers id, id2, id4, and id8, which hold the identifier
of the respective thread, multiplied by 1, 2, 4, and 8. Also, there are special registers for the
program counter holding the IRAM index of the next instruction to execute, a performance
counter used for measuring the time, a carry bit, and the zero flag. Last but not least, there are
four read-only registers which are shared by all threads: the Registers zero and one hold, as
their names suggest, the constants 0 and 1, whereas the Registers lneg and mneg hold the least
negative and most negative 32-bit values, that is −1 and −231.

A DPU is a reduced instruction set computer (RISC) with mainly 32-bit instructions—most
64-bit operations are pieced together from several 32-bit ones, thereby taking more than eleven
cycles. There is no hardware support for multiplication or division, so these are emulated by
functions, thereby taking even longer. On top of that, there is no hardware support for floating
point arithmetic, requiring costly emulation as well.

Instructions follow a 3-operands design, meaning there can be up to three register arguments
to an instruction, with the target register coming first. Next to registers, it is also possible to
pass immediate values, that is constant values passed directly without a register, and labels,
which are effectively IRAM indices of instructions. Some examples:
• move r6, 4 stores the immediate value 4 in Register r6.
• lw r13, r12, -4 loads the 32-bit word which is four bytes away from the WRAM address
stored in Register r12 into Register r13. Note that all addresses are physical.

• add r1, r5, r11 takes the 32-bit integers in Registers r5 and r11, adds them, stores the
result in Register r1, and sets the carry bit accordingly.

• addc r0, r4, r10 performs an addition taking the carry bit into account, allowing to
perform one 64-bit addition by invoking two 32-bit instructions.

• jump .LABEL sets the program counter to the index of the labelled instruction.
Despite their name, some of the general-purpose registers do have conventional uses. The
Registers r0 to r7 are filled with the arguments of a function before it is called. The return value

7



Chapter 2. Prerequisites

of a function is written to the Registers r0 or d0, depending on whether it is 32 bits or 64 bits
long. Register r22 contains the stack pointer, that is the address of the currently last element
in the stack of the respective tasklet. When a function is called and it need store data on the
stack, it saves the original value of the stack pointer on the stack itself before incrementing the
stack pointer, therethrough allocating new memory. When the function terminates, it loads
the original stack pointer value back into Register r22, therethrough deallocating memory.
Register r23 contains the return address, that is the IRAM index of the instruction whither to
jump after the termination of a function. Here, the instruction to load and store 64-bit large
double words are of particular use. By invoking sd r22, <offset>, d22, the content of both
Registers r22 and r23 is stored to some position relative to the current stack pointer, whence it
can be recovered by invoking ld d22, -<offset>, r22 later on. Thereby, the bandwidth of
the WRAM is effectively doubled and the instruction count reduced.

The capabilities of DPU instructions is substantially enhanced by the plethora of conditions,
of which there are a total of 51. Conditions are binary flags which are passed as additional
arguments to instructions so that those act as either test operation or combo operations. A test
instruction performs its usual purpose but stores the evaluation of the condition in the target
register. For example, the instruction add r0, r0, -1, pl takes the content of Register r0,
decrements it, and checks the condition pl. This condition evaluates to true if the result is
greater than or equal to zero. Therefore, Register r0 will contain the value 1 if and only if
Register r0 used to store the number 1 or greater, and will contain 0 otherwise. A combo
instruction takes a label as yet another argument. The instruction performs its usual purpose,
checks whether the result fulfils the condition, and, if yes, performs a jump to the label. An
example is the instruction add r0, r0, -1, pl, .LABEL_LOOP, where Register r0 holds a
loop index which get decremented. Should Register r0 now hold a value greater or equal
to zero, a jump back to the beginning of the loop body marked by the label .LABEL_LOOP is
performed. Otherwise, the next line of the compilation is executed. This way, it takes just eleven
cycles to update the loop index, check the loop condition, and perform the appropriate action.
Such techniques of saving instructions are especially valuable because DPUs are incapable of
instruction level parallelism. Although conditions are employed automatically by the compiler
for the most part, Chapter 4 includes a manual use of conditions.

2.1.5. Programming a Kernel

Executing tasks on an UPMEM system requires both a program executed on the host CPU and
a kernel executed on the DPUs. DPUs are handled in groups of up to 64 DPUs from the same
rank of a DIMM. The groups, in turn, are aggregated in a DPU set. A typical course of action is
the following:
1. Start the host program.
2. Write the input to the MRAM and/or WRAM of all involved DPUs.
3. Boot the DPUs and execute the kernel synchronously or asynchronously.
4. Read the output from the MRAM and/or WRAM.
5. Go back to the second or third step if needed.

When kernels are executed synchronously, the host cannot access the memory of a DPU until all

8



2.1. The UPMEM Architecture

DPUs in the whole set have finished. But even with an asynchronous execution, the host cannot
access the memory until all DPUs in the same rank have finished. Note that data is generally not
deleted when a kernel finishes, so subsequent executions can hark back to previous results. Also,
any communication between the host and the DPUs must be initiated by the host. The host
program can be written in C, C++, Java, or Python. Apart from a few additional functionalities
provided by the UPMEM application programming interface (API) for communicating with the
DPUs, the host program is a regular executable.

The software development kit includes a simulator which allows to run kernels on machines
without UPMEM DIMMs. The kernel has to be written in either C or assembler, but we will
focus on the former. Its entry point is the main function, thence one can proceed as in any
C program. All tasklets execute the same kernel, but their control flow can be changed by
simply including conditionals on the tasklet identifiers. Synchronisation between tasklets can
be achieved, amongst others, via barriers, mutual exclusion, and semaphores. Communication
between tasklets is achievable by defining global variables. The C standard library is only
partially available as some compute-intensive functionalities have been not been implemented,
for example the entire math library.

The biggest changes to a regular C program are in relation to the memory. Any variable
resides in the WRAM by default, but creating an MRAM variable is as easy as adding the
qualifier __mram to the variable declaration. By default, too, any pointer is assumed to point to
data in the WRAM, which can be changed by adding the qualifier __mram_ptr. The compiler
correctly identifies confusion between pointers of different address spaces.

Local WRAM variables are created on the stack of the respective tasklet, and the stack sizes
can be set for each tasklet individually at compile time. Nonetheless, it is possible for tasklets
to dynamically allocate more space on the WRAM via an allocator similar to the standard C
function malloc. Although this is called heap allocation, the name is misleading. The compiler
organises the WRAM such that all tasklet stacks and anything else statically allocated on the
WRAM is in the front, so that the free memory comprises a contiguous block in the back of
the WRAM. Then, the so-called heap pointer is set to the beginning of the free block. When
memory is allocated on the heap, the heap pointer is sufficiently incremented to mark the space
as reserved. Afterwards, the original position of the heap pointer is returned to the allocating
tasklet. In other words: the heap memory is simply a stack memory shared by all tasklets.
Indeed, a DPU lacks an equivalent to the standard C function free to deallocate heap memory.
The only possibility is to reset the entire heap by setting the heap pointer back to its initial
position. There is also no model of ownership, so tasklets can write to any memory address,
including the stack and heap memory of other tasklets. Heed must be paid when structuring
the scarce WRAM, which is subject again in Section 4.2.

As hinted before, transferring data between the MRAM and theWRAM is in the responsibility
of the programmer. When only single elements are to be accessed, variables in the MRAM can
be treated like normal variables. For example, var = arr[i] is valid code no matter whether
the array arr, the variable var, or the index i have been declared to reside in the WRAM or
the MRAM. However, this still constitutes one or more DMAs on each use, and each DMA
comes at a cost. According to measurements [18], reading from the MRAM has an overhead of
77 cycles, whilst writing to the MRAM has an overhead of 61 cycles. The transfer of each byte
costs a further 0.5 cycles. This means that DMAs of about 128 B or less are dominated by the
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overhead. Therefore, it is recommended to move large blocks of MRAM data into the WRAM,
perform calculations there, and move the modified data block back to the MRAM. This way,
the overhead is mitigated. Note that, like for WRAM data, the time to access MRAM data is
independent of the exact location—only the memory type matters.

To perform such blockwise moves, one calls the C function mram_read and mram_write,
which take a source address, a target address, and the number of bytes to use transfer. There
are, however, several limitations.
• The WRAM address must be aligned to 8 bytes. This can be ensured automatically by adding
appropriate qualifiers to stack variables or by using heap memory which gets properly
aligned automatically.

• The MRAM address must be aligned to 8 bytes. No special functionality exists to this end; it
is up to the programmer to organise the MRAM with this limitation in mind and to resort to
DMAs to single elements if such an alignment is not given.

• The number of transferred bytes must be at least 8, at most 2048, and a multiple of 8.
Failing to fulfil these constraints can result in missing or corrupt data. The DMA engine works
sequentially, meaning data for only tasklet can be transferred at a time. If multiple tasklets
call mram_read or mram_write, some of them will be suspended for longer as they wait for the
other DMAs to finish. If DMAs are very frequent, having many active tasklets is especially
important to keep the pipeline full.

For a performant kernel execution, it is generally recommended to restrict oneself to simple
32-bit logic as much as possible. Some 64-bit functionalities are executed in eleven cycles,
like loads and stores, but most take twice or even thrice as long. Multiplication, division, and
floating point arithmetic are emulated in software, so they should be avoided if necessary. In
their stead, addition, subtraction, and bitwise logic should be used. Also, due to the unit-cost
model, a decrease in the count of instructions translates into a performance gain. Unfortunately,
a common issue is a nosediving quality of the compilation, perhaps resulting from a wrong
configuration of the LLVM-based compiler. Investigating the compilation and trying different
approaches— including even mundane alternatives like reordering independent if statements—
is paramount when aiming for top performance and, therefore, a recurring theme in this thesis.
In our experience, explicitly saving the result of a computation if the value is reused at a later
time prevents the compiler from issuing a recalculation which would elsewise hurt due to the
compute-boundedness of the architecture. Also, it seems that pointer logic tends to be compiled
better than index logic. Lastly, inlining leads to a performance gain oftentimes as the overhead
for function calls is quite heavy. Even though the call itself is a mere jump taking elven cycles,
several registers must be saved and reloaded on entering and exiting a function; for an empty
function with two arguments, we determined a call overhead of 144 cycles. This number can
easily rise with heavier register usage. This may also explain why turning arguments into
global variables nets a performance gain in some cases as well.
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2.2. Fundamentals of Sorting

This section is concerned with algorithm which solve the sorting problem for numbers.

Problem 1 (Sorting). Given an input sequence ⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩ of 𝑛 numeric elements, find a
permutation 𝜋 of the set {1, … , 𝑛} such that 𝑎𝜋(1) ≤ 𝑎𝜋(2) ≤ … ≤ 𝑎𝜋(𝑛) holds.

Albeit important, the runtime is not the only distinguishing feature of a sorting algorithm.
Stability and the memory footprint are remarkable, too. We specify space complexity in the
form of the count of indices, pointers, or numbers of the same type as the input, thus ignoring
their lengths in bits.

Definition 2. A sorting algorithm works in place if it needs auxiliary space of size O(1) to sort
an input of 𝑛 elements. A sorting algorithm works out of place if it does not work in place.

Definition 3. A sorting algorithm is stable if equal elements remain in the same order in the
output as in the input. A sorting algorithm is unstable if it is not stable.

As already pointed out in Chapter 1, sorting is a fundamental problem in computer science
and is being worked on at least since the middle of the 20th century [14, 20, 47]. Multiple
types of sorting algorithms have emerged throughout the decades. For instance, if every input
element is of one of 𝑘 possible values, one may use a CountingSort where the input sequence is
scanned and particular counters are incremented when passing elements, thereby achieving a
runtime in O(𝑛 + 𝑘). If the input elements have few significant digits, RadixSort may be useful.
RadixSort has 𝑘 rounds if the input elements have 𝑘 digits, and in the 𝑖th round, elements are
distributed amongst buckets according to their 𝑖th digit, whereby a runtime in O(𝑘𝑛) is achieved.
The arguably most extensive category are comparison-based sorting algorithms, which need
a comparison operation establishing a total preorder over the data. Their runtimes can differ
greatly from one another and also between input sequences, however, there is a lower bound
on the runtime.

Theorem 4. A comparison-based sorting algorithm cannot be faster than Ω(𝑛 log 𝑛) in the worst
case. [30, pp. 91 sq.]
Proof. Sorting can be understood as identifying the current permutation of the input and
applying a new one. The identification process can be modelled through a binary decision tree.
Each comparison made corresponds to going one level further down from a parent vertex to a
child vertex. When reaching a leaf, the input is fully identified, and the number of comparisons
made along the way matches the depth of the leaf. Since there are 𝑛! possible permutations,
there must be at least 𝑛! leaves. A binary tree of depth 𝑑 has at most 2𝑑 many leaves. Thus, we
get

2𝑑 ≥ 𝑛! ⟹ 𝑑 ≥ lb(𝑛!) ≥ lb((𝑛/2)𝑛/2 + 0𝑛/2) = 𝑛/2 ⋅ lb(𝑛/2) ∈ Ω(𝑛 log 𝑛)

as lower bound on the depth of the decision tree and, consequently, on the number of comparis-
ons in the worst case. �

By arguing that the average depth of leaves in a binary tree is at least ⌊lb(𝑛!)⌋ [4], a lower
bound of Ω(𝑛 log 𝑛) is shown for the average case as well. Indeed, there are sorting algorithms
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which are asymptotically optimal in the average case and even in the worst case. Nevertheless,
suboptimal algorithms can be advantageous, for example, on shorter inputs due to better
constant factors hidden in the asymptotic notation or on inputs which display exploitable
patterns. A sorting algorithm which combines two or more sorting algorithms is called a hybrid
sorting algorithm.

Many if not almost all modern sorting algorithms are hybrids and, despite the age, still rely
in principle on HeapSort (see Section 3.3), which uses a heap as a priority queue to find the
next greatest element, QuickSort (see Section 3.4), which compares elements against a pivot
element to form two partitions of little and great elements, respectively, and MergeSort (see
Section 3.5), which repeatedly merges sorted subsequences. Whilst QuickSort is usually the
fastest of the three, its runtime on some inputs is suboptimal. IntroSort [31] circumvents this
issue by switching to HeapSort when QuickSort takes too long since HeapSort has a guaranteed
runtime in O(𝑛 log 𝑛). Pattern-defeating QuickSort [35] switches to HeapSort even earlier by
detecting when the problem size is not diminishing enough. Both hybrids fall back to the
asymptotically suboptimal InsertionSort if the problem size is sufficiently reduced— a technique
shared with the MergeSort-based TimSort [36]. Fallback algorithms are also useful on DPUs
thanks to their reduction of the instruction count, as will be seen in later chapters.

Another source of performance gains arises from loop transformations. This includes loop
unrolling where the step size is multiplied by an unroll factor 𝑥 and the loop body is repeated 𝑥
times (see Section 3.5.1 for a more profound discussion). Not only is this advantageous on CPUs
in sorting algorithms like IPS4o [1], S5 [2] or SkaSort [41] but also on DPUs where reducing
the instruction counts in hot loops is critical. Other loop transformations, however, have
little to no effect on a DPU or might be even hurting performance through an increased loop
overhead. S5 uses loop fission, that is, it breaks loop bodies apart and puts them into own loops.
This can be useful if, for example, one were to calculate arr[i] = 2 × arr[i] + 1 in a lopp.
The loop can be broken apart such that a first loop calculates arr[i] = 2 × arr[i] and a
subsequent one arr[i] = arr[i] + 1. Now, the calculation is eligible for vectorisation, that
is the simultaneous exertion of the same operation on multiple elements, of which a DPU is
incapable.

Other enhancements are not applicable to DPUs, too. When a CPU encounters a branch, it
speculates on whether the branch will be taken and fills its pipeline accordingly before the
evaluation of the branch condition is finished. When a misprediction happens, the work was in
vain and the pipeline of the CPU has to be flushed. According to information theory, QuickSort
is the fastest when the problem size is perfectly halved in each step. However, with a perfect
fifty-fifty split, no branch predictor can effectively speculate on the future of individual elements.
For this reason, a skewed split can improve the runtime in spite of an increase of the instruction
count [22]. BlockQuickSort [12] and IPS4o eliminate branch prediction altogether by writing
the indices of wrongly ordered elements to buffers of which is taken care at a later time. They
do so by maintaining an index of the current position in the buffer and writing the index of
every element to this index unconditionally. The comparison result of the check on whether
an element needs to be displaced is cast to either zero or one and added to said index. As a
result, the index of an element which needs no displacement gets overwritten upon visiting
the next element. Similarly, IPS4o and S5 use casting to calculate positions in a decision tree
branchlessly to quickly distribute elements amongst buckets. It is reasonable to assume that
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these techniques would be disadvantageous on a DPU as they do effectively nothing besides
increasing the instruction count.

Of course, there are also design decisions which are related to memory accesses. IPS4o was
contrived with the parallel external memory model in mind in order to limit I/O on systems
with non-uniform memory access. In this model, each thread has a small private cache of size
𝑀 and can access the large external memory in blocks of size 𝐵. Such a consideration is not
inappropriate in the context of DPU algorithms, for a single DPU already accesses memory not
in a uniform way due to the split of WRAM and MRAM. The non-uniformity is exacerbated
when considering algorithms where DPUs access the MRAM of others. Indeed, limiting DMAs
is subject of Section 4.3 although our use case is simple enough to omit a theoretical analysis
via the external memory model.
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Chapter 3.

Sorting in the WRAM

This chapter is concerned with sorting data which fits into the WRAM entirely. The presented
sorting algorithms are designed for sequential execution by a single tasklet. Key characteristics
of the DPU architecture which are of especial importance in this chapter are the uniform access
to WRAM data and the unit-cost of instructions.

Section 3.1 discusses InsertionSort which is a component of all algorithms presented thereafter
as it is lightweight and performant on short inputs. Section 3.2 covers ShellSort which is
a generalisation of InsertionSort. Sections 3.3, 3.4, and 3.5 deal with HeapSort, QuickSort,
and MergeSort, respectively, which are more elaborate algorithms suitable for long inputs.
Every section gives a short presentation of its respective algorithm at the beginning, ensued
by a discussion of key parameters in their designs. This is usually followed by an insight
into non-algorithmic challenges faced during development caused by the compiler whose
optimisations are often of suboptimal quality. Finally, an evaluation of the performance of
the respective algorithm completes each section. Section 3.6 summarises the findings on the
presented algorithms and gives a brief outlook on future improvements.

Appendix A contains a comprehensive collection of measurements but the ones essential for
following the content of this chapter are also presented in figures herein. Every measurement
was repeated a thousand times with the sorting algorithms in their default configuration unless
explicitly noted otherwise. The meaning behind and reasoning for the individual parameters in
the configurations are subject in Sections 3.1 to 3.5 but shall be mentioned already for ease of
reference:
InsertionSort explicit sentinel value
ShellSort explicit sentinel values; step sizes ℎ = (1, 6) for inputs with at most 64 elements and

ℎ = (1, 4, 17) for longer ones
HeapSort top-down for 32-bit integers; bottom-up with swap disparity for 64-bit integers
QuickSort fallback threshold of 18 elements; random medians as pivots; prioritisation of right-

hand partitions over left-hand partitions; iterative for 32-bit integers; recursive for 64-bit
integers; Handling (5)

MergeSort half-space; starting run length of 14 elements
Measurements are confined to at most 1024 elements. The reason is that 64 KiB of WRAM

are available and that most kernels will run with at least 11 tasklets to saturate the instruction
pipeline. In consequence, at most 5957 B are allotted to each tasklet. The tasklet stack accounts
for 600 B of this amount, leaving space for about 1339 32-bit elements. On that score, 1024
elements is a reasonable cutoff.
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3.1. InsertionSort

InsertionSort works by moving the 𝑖th element leftwards as long as its left neighbour is greater,
assuming that the elements with indices 0 to 𝑖 − 1 are already sorted [30, p. 83, 48, Section 2.2.1].
Its asymptotic runtime is above the theoretical minimum of Ω(𝑛 log 𝑛), reaching Ω(𝑛2) not only
in the worst case but also in the average case, since any of the (𝑛2) pairs of input elements is
in wrong order, needing to be swapped at some point in the execution, with probability 50%.
Nonetheless, InsertionSort does have more than one silver lining:
1. If the input array is mostly or even fully sorted, the runtime drops down to O(𝑛).
2. It works in place, needing only O(1) additional space.
3. The sorting is stable.
4. Its implementation is short, lending itself to inlining.
5. The overhead is small.

Especially the last two points make InsertionSort a good fallback algorithm for asymptotically
better sorting algorithms to use on short subarrays.

3.1.1. Presentation of Key Aspects

Sentinel Values When moving an element to the left, two checks are needed: Does the left
neighbour exist and is it less than the element to move? The first check can be omitted through
the use of sentinel values [48, p. 93]: If the element with index −1 is permanently set to the least
possible value of the chosen data type, it is at least as little as any element in the input array,
and the leftwards motion stops there at the latest. Since a DPU lacks branch prediction, the
slowdown from performing twice as many checks as needed is quite high and goes up to 30%
for short inputs with 24 uniformly distributed 32-bit elements.

Setting such an explicit sentinel value can be omitted by using implicit sentinel values [38].
At the start of round 𝑖, one can check whether the element with index 0 is at least as little as
the element with index 𝑖. If so, the former is a sufficient sentinel value, and InsertionSort can
proceed as normal. If not, the latter must be the minimum of the first 𝑖 + 1 elements. Therefore,
one can shift the first 𝑖 elements one position backwards and place the minimum in the front. For
simplicity, the words ‘explicit’ and ‘implicit’ are, henceforth, applied to the word ‘InsertionSort’
directly to imply the type of the sentinel value used.

3.1.2. Investigation of the Compilation

Figure 3.1a shows a naïve implementation of InsertionSort which begins at the very start of the
input. Obviously, nothing happens in the first round as a lone element is already sorted, so it is
algorithmically sound to let InsertionSort begin at the second element. This optimisation is
accomplished in Fig. 3.1b. Surprisingly, it leads to a longer runtime! For instance with sixteen
32-bit integers, the runtime is increased by nine instruction. The same increase happens if one
keeps *i = start and uses curr = ++i instead to begin at the second element.

Looking at the compilation reveals the reason: In the naïve version, the pointer pred is
optimised away and, in its stead, the pointer curr is passed to all load instructions together
with a constant offset of -4. In the optimised version, the pointer pred is used together with
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1 void InsertionSort(int *start, int *end) {
2 int *curr, *i = start;
3 while ((curr = i++) <= end) {
4 int to_sort = *curr;
5 int *pred = curr - 1;
6 while (*pred > to_sort) {
7 *curr = *pred;
8 curr = pred--;
9 }

10 *curr = to_sort;
11 }
12 }

(a) Start at the first element and with predecessor
pointer.

1 void InsertionSort(int *start, int *end) {
2 int *curr, *i = start + 1;
3 while ((curr = i++) <= end) {
4 int to_sort = *curr;
5 int *pred = curr - 1;
6 while (*pred > to_sort) {
7 *curr = *pred;
8 curr = pred--;
9 }
10 *curr = to_sort;
11 }
12 }

(b) Start at the second element and with predecessor
pointer.

1 void InsertionSort(int *start, int *end) {
2 int *curr, *i = start;
3 while ((curr = i++) <= end) {
4 int to_sort = *curr;
5 while (*(curr - 1) > to_sort) {
6 *curr = *(curr - 1);
7 curr--;
8 }
9 *curr = to_sort;

10 }
11 }

(c) Start at the first element andwithout predecessor
pointer.

1 void InsertionSort(int *start, int *end) {
2 int *curr, *i = start + 1;
3 while ((curr = i++) <= end) {
4 int to_sort = *curr;
5 while (*(curr - 1) > to_sort) {
6 *curr = *(curr - 1);
7 curr--;
8 }
9 *curr = to_sort;

10 }
11 }

(d) Start at the second element and without prede-
cessor pointer.

Figure 3.1. Four different implementations of InsertionSort in C. Figures 3.1a and 3.1c are compiled
the same. Figures 3.1b and 3.1d are compiled differently.

offsets of +4 and 0 to fetch the values of to_sort and *pred at the beginning of each round.
Only then, the pointer curr is initialised before being used in the inner loop as in the naïve
version. Effectively, this initialisation introduces one more instruction.

These changes fully explain the extension of the runtime by nine instructions: The optimised
version invokes one instruction at the beginning of the function to advance the starting position
and loops 15 times in total, each time initialising the pointer curr. The naïve version loops 16
times, invoking seven instructions for naught in the first iteration.

Multiple workarounds exist to sidestep this problem. One of them is to take the unoptimised
code and change the starting position via inline assembler. This is trivial for the explicit
InsertionSort since one can simply inject an add instruction at the beginning of the function to
increment the pointer start. The implicit and the sentinel-less InsertionSorts need to know
the original starting address start later on, though, and initialise the actual starting point
rather late; injecting inline assembler proves more difficult as a consequence. Moreover, as
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InsertionSort is to be used as fallback algorithm by other sorting algorithms which might also
need to keep the original value of start, inline assembler is a bad choice even for the explicit
InsertionSort.

Another workaround is the usage of a wrapper function calling InsertionSort with the
arguments start + 1 and end. This works quite well: First, the register holding start is
incremented, and, then, the inlined code from the actual InsertionSort follows. Doing so makes
the runtime drop as expected.

Recall how in the faster version (Fig. 3.1a), the pointer pred is always deduced from the pointer
curr using an offset. This gives the cue for yet another workaround: In Figs. 3.1c and 3.1d, every
occurrence of pred is replaced with curr - 1. As a consequence, the code of Fig. 3.1c compiles
the very same as the one of Fig. 3.1a, whilst Fig. 3.1d yields the same compilation as the versions
with the wrapper function or the inline assembly. This workaround is clearly the best of the
three and, hence, the one used in the rest of this thesis.

Alas, the eternal struggle with the compiler endeth not herewith. A deeper look into the
compilation reveals the following sequence:

move r3, r0 // copy content of register r0 to r3
jleu r4, r2, .LABEL // jump to .LABEL if r4 ≤ r2
move r3, r0

Without delving further into its significance— the second move r3, r0 is unneeded as it is
impossible to jump directly to it nor to return via jleu. Copying the whole assembler code
and injecting it as inline assembler but without this second move r3, r0 pushes the runtime
even further down whilst maintaining the correctness of the output. New issues, especially
for inlining, are introduced, though, and we deem a proper assembly implementation as out of
scope for this thesis.

3.1.3. Evaluation of the Performance

The runtimes of the three InsertionSorts can be compared in the Figs. 3.2, A.1 and A.2. The
sentinel-less InsertionSort is consistently worse than the explicit one. For most input distribu-
tions, the implicit InsertionSort is also a bit slower, as it effectively performs one check more
for each element. Of course, the gap becomes less significant with increasing input length as
the other operations of the loops dominate the runtime.

An outlier, however, are the reverse sorted inputs. For 32-bit numbers (Fig. 3.2), the speedup1
of the implicit InsertionSort over the explicit one drops down to as little as 0.68. This comes as
a surprise since both versions effectively execute the same loop body while shifting everything
one position backwards, with only the loop condition being different. Due to DPUs being
unit-cost machines, a value check on whether the preceding element is less (explicit Insertion-
Sort) and an address check on whether the preceding position is the start of the array (implicit
InsertionSort) should take the same amount of time. Yet, even the sentinel-less InsertionSort
surpasses the implicit InsertionSort, despite doing both value checks and address checks. For
64-bit numbers (Fig. A.2), the implicit InsertionSort would be expected to perform better than

1. The speedup 𝑆 of an algorithm 𝐴 over an algorithm 𝐵 is defined as the ratio t(𝐵)/t(𝐴) of their runtimes t(𝐴) and
t(𝐵). Values below 1 indicate that algorithm 𝐴 runs slower than algorithm 𝐵.
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Figure 3.2. Mean runtimes of sorting algorithms with a runtime in O(𝑛2) on 32-bit integers.

the explicit one, considering that a value check now takes two instructions and an address
check still only one. Nonetheless, the two InsertionSorts tie. This constitutes another case of
bad compilation. We did not troubleshoot as the explicit InsertionSort would still be expected
to offer superior performance in most cases. The explicit InsertionSort is, therefore, used in the
rest of this thesis and referred to plainly as ‘InsertionSort’ henceforth.

Note. Other known simple sorting algorithm are SelectionSort and BubbleSort. SelectionSort [30,
p. 83, 48, Section 2.2.2] assumes, like InsertionSort, that the elements with indices 0 to 𝑖 − 1 are
already sorted in round 𝑖. It scans the elements with indices 𝑖 to 𝑛 and finds their minimum.
Then, it swaps a minimum element with the element with index 𝑖. BubbleSort [48, Section 2.2.3]
scans the elements with indices 0 to 𝑛 − 𝑖 + 1 and swaps each pair of neighbouring elements if
they are in the wrong order. An easy extension is adaptive BubbleSort which sorts only up to
the position of the last swap.

The average-runtime complexity of SelectionSort and BubbleSort is the same as that of
InsertionSort. The asymptoticity, however, hides much higher constant factors such that
InsertionSort should always be preferred, as seen in Figs. 3.2, A.1 and A.2. Consequently, they
will not be expanded on further in this thesis.
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3.2. ShellSort

InsertionSort suffers from little elements in the back of the input, since those have to be brought
to the front through Θ(𝑛) comparisons and swaps. ShellSort [39, 48, Section 2.2.4] circumvents
this by doing 𝑘 passes of InsertionSort with decreasing step sizes: In pass 𝑝 = 1,… , 𝑘 with
step size ℎ𝑘−𝑝, the input array is divided into ℎ𝑘−𝑝 subarrays so that the 𝑖th subarray contains
the elements with indices (𝑖, 𝑖 + ℎ𝑘−𝑝, 𝑖 + 2ℎ𝑘−𝑝, …), for 0 ≤ 𝑖 < ℎ𝑘−𝑝. These subarrays then
get sorted individually through InsertionSort. The final step size is ℎ0 = 1 such that a regular
InsertionSort is performed. Intuitively, early InsertionSorts are fast as they touch only few
elements and little elements in the back are brought forward in large steps. Later InsertionSorts
are also fast as elements are close to being sorted. Like regular InsertionSort, ShellSort works in
place, but it loses the stability property.

Finding the right balance between the heightened overhead through multiple InsertionSort
passes and the shortened runtime of each InsertionSort pass is subject to research to this
day [27, 42] and depends on the cost of the operation types (comparing, swapping, looping).
Traditionally, step sizes were constructed mathematically, allowing to determine ShellSort’s
runtime to be, for example, O(𝑛1.2) [48, p. 106] or O(𝑛 log2 𝑛) [42, Section 2], that is better
than InsertionSort. Nowadays, well-performing step sizes are identified empirically [8, 27, 42],
making a generalisation and, thus, asymptotic analysis more difficult.

3.2.1. Evaluation of the Performance

Let us first focus on short inputs where only two passes with step sizes ℎ = (1, ℎ1) suffice. The
previous results on InsertionSort suggest that a fast ShellSort ought to make use of ℎ1 sentinel
values. Figures 3.3, A.3 and A.4 show that, with the exception of the ShellSort with step size
ℎ1 = 2, the additional pass starts to pay off at around 16 elements for both 32-bit and 64-bit
values with the uniform random input distribution, reaching a speedup of around 1.15 to 1.2 at
24 elements. In case of the reverse sorted input, the speedup is practically always above 1 even
for very short inputs, reaching around 1.25 to 2.1 at 24 elements. On sorted and almost sorted
inputs, ShellSort exhibits a slowdown in the benchmarked range of input lengths.

Whenmoving to greater input lengths (Figs. 3.4 and A.5 to A.8), the differences in performance
between the two-pass ShellSorts become more pronounced. Between 48 and 64 elements, three
passes get worthwhile to consider. On the one hand, the findings are in accordance with the
widely used ones by Ciura [8, cf. 42] who, for 128 elements, determined ℎ = (1, 9) to be the
optimal pair and ℎ = (1, 4, 17) to be the optimal triplet, which is also the case in Fig. 3.4. On
the other hand, the gain from doing three passes is far smaller: Ciura calculated an average
speedup of 1.33 over doing two passes, while it is only 1.16 on a DPU. In contrast to his findings,
this also makes it unlikely that four passes would yield any gains at this input length. This
shows that past findings on non–unit-cost models cannot be applied one-to-one to DPUs.

But would pushing the limits of ShellSort even be rewarding? Greater input lengths require
greater steps—presumably well into the three digits for 𝑛 ≈ 1000 [8, 42]— and those in turn
require more sentinel values. Implicit sentinel values could provide relief since the slowdown
from implicitness should vanish for longer inputs, as was the case for InsertionSort. Still, finding
the best step sizes for longer inputs would be more complex because the length and, thus, the
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Figure 3.3. Mean runtimes and speedups over InsertionSort of InsertionSort (1) and various two-
pass ShellSorts (2–9), whose step sizes ℎ1 are indicated by their labels, on uniformly distributed
32-bit integers.

number of reasonable combinations of step sizes become larger. Unfortunately, longer optimal
tuples cannot be constructed straightforwardly from shorter optimal ones. The usefulness of
such an endeavour, on the other hand, would likely be niche. ShellSort is outperformed by
other algorithms presented hereafter, and those have no use for a ShellSort adjusted to longer
inputs. Its only saving grace could be its in-place property (especially when relying solely on
implicit sentinel values) combined with its medium speed, as discussed in Section 3.6.
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integers. The two-pass ShellSorts are situated on the lowest file, which is labelled ‘/’. The three-pass
ShellSorts are situated on the files above, whose 𝑦 values indicate the step size ℎ2. The coloured
symbols encode the step sizes ℎ1.
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3.3. HeapSort

HeapSort [14, 47, 48, Section 2.2.5] makes use of a so-called heap, which is a priority queue
allowing to retrieve and remove the maximum element stored in time O(log 𝑛). Repeated
retrieval and removal of the maximum allows to sort in place in time O(𝑛 log 𝑛), although the
algorithm is unstable.

A heap (or, more specifically, a binary max-heap) is a binary tree of logarithmic depth whose
layers are fully filled, that is, the layer of depth 𝑖 contains 2 𝑖 vertices. The only exception is the
last layer, which may contain less vertices but must be filled from left to right. In the context
of HeapSort, the vertices are identified with the elements to sort. The heap order dictates that
each parent must be at least as great as its child. Consequently, the root has the greatest value.
A heap with 𝑛 vertices can be represented as an array of length 𝑛 using a bijective mapping
between the vertices and the array indices: If the root is stored at position 1, the children of the
vertex with index 𝑖 have the indices 2𝑖 and 2𝑖 + 1, whilst its parent has index 𝑖 ÷ 2, where the
obelus (÷) denotes an integer division.

After the heap has been built in place from the input array in time O(𝑛), the sorting works as
follows: At the start of round 𝑟 = 1, … , 𝑛, the first 𝑛 − (𝑟 − 1) elements of the array represent the
heap and the last 𝑟 − 1 elements the end of the sorted output. The root, which is the 𝑟 th greatest
element of the input, gets removed and, since the heap cannot contain holes, a reparation
procedure is performed. Since the heap has shrunken by one vertex, the removed root can be
stored at index 𝑛 − (𝑟 − 1), that is the freed-up position directly behind the end of the heap.

3.3.1. Presentation of Key Aspects

Sifting Direction Once the heap is built, the top-down HeapSort proceeds as follows: At
the start of each round, the root and the rightmost leaf in the bottom layer (‘last leaf’) swap
places. The root is now in the correct output position, but the former last leaf may violate the
heap order, that is, the root may be less than one or both of its children. The greater of the
two children is determined, and the root and the greater child swap places. This sifting of the
former last leaf downwards continues iteratively until the heap order is restored.

In contrast, the bottom-up HeapSort [45] works as follows: At the start of each round, the
root is removed so that a hole sits now at the top of the heap. Then, the hole and the greater of
its two children swap places. This sifting of the hole downwards continues iteratively until it
becomes a leaf. Now, the last leaf is moved to the position of the hole. Should this former last
leaf be greater than its new parent, then the heap order is now violated. It needs to be sifted
upwards by iteratively swapping positions with its respective parent until the heap order is
restored. At last, the original root element can be put where the former last leaf used to be.

The motivation behind these variants is at follows: In each step where the top-down HeapSort
sifts a former last leaf downwards, two value checks (Which child is greater? Is the parent less
than the greater child?) need to be done. The leaves of a heap tend to be little so the downwards
sift normally lasts awhile. As opposed to this, each step of the bottom-up HeapSort needs only
one value check (Which child is greater?). Both HeapSorts sift downwards similarly long so
many checks can be saved. Since the last leaf effectively takes the place of another leaf and
since both are likely little, the upwards sift should be short-lived and not eat the gain up.
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Sifting upwards reverts some of the changes done by sifting downwards. The bottom-up
HeapSort can be brought to swap parity with the top-down HeapSort by the following change:
The sifting downwards is traced but the vertices are not actually moved. Once the leaf where
the hole would end up is reached, the sifting is backtracked until the bottommost vertex which
is greater than the last leaf. The position found is where the last leaf would end up after sifting
upwards, so all vertices below can stay put and all vertices above move to their parents’ positions,
that is, thither the swaps from sifting downwards would have put them. This implementation
variant makes sifting downwards even cheaper, but it must be sifted upwards all the way to the
root then.

Sentinel Values When HeapSort sifts a vertex downwards, it needs to determine the greater
of its two children before deciding whether and whither to move. If and only if the heap has an
even number of vertices, there is a left child without a right sibling: the rightmost leaf in the
bottom layer. Instead of adding some check on whether the right sibling exists, one can rather
add the missing leaf and set it to the least possible value each time the heap reaches an even
size. Thus, if it has been confirmed that a left child exists, a right one does also exist. Bounds
checks on whether a left child exists are still required lest HeapSort loses its in-place property,
since there are about 𝑛/2 leaves of which all would need sentinel children.

Likewise, whenever HeapSort sifts upwards and considers the parent 𝑖 ÷ 2 of a vertex 𝑖, it will
only proceed if the parent is less. Since the root has index 1, the formula 𝑖 ÷ 2 yields 0, so it
makes sense to set the element with index 0 to the greatest possible value to stop any upwards
sift. The speedup from using sentinel values is about 1.15.

Code Duplication A strategy particularly useful for HeapSort — although employed in other
sorting algorithms, too— is code duplication. Sifting downwards can be broken down into
two steps: 1. Find the greater child. 2. Perform some operations on said child. A natural
and concise implementation would determine the greater child and, then, store its index in
a variable on which the operations are performed afterwards. However, the quality of the
compilation improves if the operations are implemented twice, once for either child, and
executed conditionally. This approach led to a speedup of about 1.07.

Base Cases When 15 elements or fewer remain in the heap, InsertionSort is used to sort them.
Admittedly, the impact of this one-time use is rather negligible, and ShellSort would not make
much of a difference.

3.3.2. Investigation of the Compilation

Under zero-based indexing, the indices of the children of a vertex with index 𝑖 are 2𝑖 + 1 and
2𝑖 + 2, whilst the one of its parent is (𝑖 − 1) ÷ 2. Under one-based indexing, the indices of the
children of a vertex with index 𝑖 are 2𝑖 and 2𝑖 + 1, whilst the one of its parent is 𝑖 ÷ 2. The
formula 𝑖 ÷ 2 is computable through a bitwise shift one place to the right, whereas (𝑖 − 1) ÷ 2
requires a subtraction before the bitwise shift. Since the bottom-up HeapSorts rely heavily on
finding parents during backtracking, one-based indexing is clearly superior.

24



3.3. HeapSort

Consistency alone would suggest one-based indexing for all types of HeapSort. However, the
first HeapSort implemented was the top-down HeapSort, which only ever sifts down. The choice
is not so obvious when focussing only on that version of HeapSort. The compiler automatically
turns multiplications by 2 into a bitwise shift by one place to the left. Next to a regular lsl
instruction for such bitwise shifts to the left, DPUs also possess an instruction called lsl_add
which first shifts to the left and then adds a number. This way, the formulæ 2𝑖 + 1 and 2𝑖 take
the same amount of time to compute. Notwithstanding lsl_add being indeed employed in
the compilation, the zero-based indexing sees a speedup of 0.93 over one-based indexing. The
reason is that lsl_add takes four arguments: the target register, the addend, the integer to shift,
and the number of places to shift. Whilst DPUs have a read-only register permanently storing
the number 1 at disposal, read-only registers can only ever be the first register to be passed, not
the second one. As a consequence, the compiler has to move the number 1 to a general-purpose
register before implementing the calculation of 2𝑖 + 1. However, this general-purpose buffer is
immediately overwritten with the result from lsl_add, raising the need to move the number 1
the next time again. Hence, the calculation of 2𝑖 + 1 does take twice as long as 2𝑖 after all.

There are a number of other curious observations. For example, the runtime difference
between stopping HeapSort when one element remains in the heap and stopping HeapSort
when only three elements remain (which then get sorted by InsertionSort) reduces the runtime
by tens of thousand of cycles. Stopping HeapSort even earlier has comparatively little effect.
For comparison, sorting just three elements solely with HeapSort barely takes one thousand
cycles at worst, including the time to build the heap.

Another curiosity was the following: Building a heap uses downwards sifting, so if the input
length is even, a single sentinel leaf must be inserted beforehand. Adding this leaf if the input
length is odd makes no difference algorithmically, as it would be a left leaf never to be accessed
due to the bounds checks. However, adding an if statement determining whether the sentinel
leaf has to be placed has dramatic effects compared to placing the sentinel leaf unconditionally.
Since the parity of the input length is reused later on, the conditional version is expected to
gain one instruction. Yet, when measuring the runtimes on 1024 elements, one can observe
anything from a reduction by 5000 cycles over changes within the margin of error to increases
by 25 000 cycles, depending on the sifting direction and the input distribution. Adding the
sentinel leave outside of the HeapSort functions has no impact on this behaviour. Comparing
the compilations reveals minute differences at the beginnings of the HeapSort functions, none
of which affecting anything repeatedly executed. The register usage does also not change in
such a manner that the execution time of instructions would be prolonged to twelve cycles.

3.3.3. Evaluation of the Performance

The measurements are visualised in Figs. 3.5, A.9 and A.10. In general, the performance of
HeapSort is hardly volatile and mostly independent from the input distribution. Reverse sorted
inputs are sorted faster than most since they are already max-heaps so building the heap is quick,
whereas sorted inputs are sorted the slowest since they are min-heaps, essentially needing
inversion. Nonetheless, the reverse sorted inputs get sorted at most 10 % faster than the sorted
ones. An extraordinary outlier are zero-one inputs on which the top-down HeapSort achieves a
speedup of 1.8 over the bottom-up HeapSort. With zero-one inputs, roughly half of the elements
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Figure 3.5. Mean runtimes of all HeapSort implementations on uniformly distributed integers.

are zeroes and roughly half are ones. After building the min-heap, the first half of the array
consists of ones and the second half of zeroes. About half of the ones and about half of the
zeroes are already in these respective halves of the input, so building the heap is fairly quick,
too. More importantly, however, is the foreshortening of the downwards sift. After about 𝑛/2
many rounds, only zeroes remain in the heap. Therefore, no last leaf violates the heap order
when moved to the top, so sifting downwards terminates immediately. But sifting downwards
becomes quicker even earlier as many ones turn into leaves once the zeroes which are their
children have been moved to the top and were sifted down to somewhere else. Such ones do
not violate the heap order when moved to the top at a later point, too.

Ignoring this outlier, the normalised runtimes of the top-down HeapSort and the bottom-up
HeapSort with swap parity show a slight upwards trends, whereas that of the bottom-up Heap-
Sort with swap disparity mostly shows a slight downwards trends. The exception are reverse
sorted inputs, where the latter also shows a slight upwards trend. Of interest is their ranking:
Value checks on 64-bit integers take two instructions, so that the savings of the bottom-up
HeapSort with swap disparity allow it to outperform the top-down HeapSort even for short
inputs. Its advantage grows with the input length. This makes sense as roughly 50% of the
vertices are leaves and 25 % are parents of leaves, no matter the total heap size. Therefore, the
percentage of former last leaves being sifted down from the top to the bottom remains steady
but the travelled distance increases. Value checks on 32-bit integers, on the other hand, take
only one instruction, so that the reduction of these is overshadowed by the increased overhead
from the longer downwards sift and the added upwards sift. Indeed, at around 2000 elements,
the bottom-up HeapSort with swap disparity overtakes the top-down HeapSort because of their
inverse trends, but the lead stays meagre even at 6000 elements.

The bottom-up HeapSort with swap parity consistently trails behind. This comes as no
surprise since the overhead of its considerably prolonged upwards sift bears no proportion
to the few swaps saved. This holds true even for 64-bit integers as moves still cost only one
instruction so the savings do not increase. Unrolling the upwards sift proved to be unhelpful.
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3.4. QuickSort

QuickSort [20, 30, pp. 88–91, 48, Section 2.2.6] uses partitioning to sort in an expected average
runtime of O(𝑛 log 𝑛) and a worst-case runtime of O(𝑛2). It selects a so-called pivot element
from the input array, then, scans the whole input array and moves elements less or greater
than the pivot to the left-hand or right-hand side of the array, that is the partitions, respectively.
Elements equal to the pivot are allowed to be in either partition. Finally, QuickSort calls itself
recursively on the left-hand and right-hand partition. QuickSort sorts out of place, as additional
space of size O(log 𝑛) is needed for a call stack. Furthermore, QuickSort is unstable.

The partitioning is implemented using a modification of Hoare’s original scheme [20]: After
the pivot p is selected, two pointers i and j are set to either end of the array. The left pointer i
moves rightwards until finding an element at least as great as the pivot (*i >= *p). Then, the
right pointer j moves leftwards until finding an element at most as great as the pivot (*j <= *p).
If the two elements found are unequal, they need to be swapped to put them in the correct
partition. But even if they are equal, swapping them anyway does not put them in an incorrect
partition. After swapping the elements, the pointers move onwards as described. This process
of repeated swaps continues until the pointers pass each other. The position where the right
pointer j came to rest marks the end of the left-hand partition, and where the left pointer i did
marks the beginning of the right-hand partition.

3.4.1. Presentation of Key Aspects

Sentinel Values In order to dispose of many bounds checks on the pointers, the partitioning
presented above does not exactly follow Hoare’s original scheme where pointers stopped only
if *i > *p and *j < *p. Instead, by stopping if *i >= *p and *j <= *p, the pivot p acts as
sentinel value for both pointers as the stopping condition is met there definitely. This means
that they cannot leave the array during their very first motion onwards.

If one pointer surpasses the pivot before the other reaches it, the pointer still cannot go out
of bounds. If the left pointer i reaches the right pointer j, then all elements behind pointer j
are already in the correct partition, that is, they are at least as great as the pivot. An analogous
argument can be made for when pointer j meets pointer i. Of course, they can also stop directly
on each other if the value on which they stopped is equal to the pivot. In consequence, only
one bounds check is needed during partitioning, namely whether j <= i holds whenever both
pointers stopped.

A downside to this modification is that elements equal to the pivot are also swapped dur-
ing partitioning. But even on inputs with many duplicates, this is a price worth paying, as
experiments show.

Pivot Positioning By a further modification, one can find the final position of the pivot, so it
need not be touched anymore in the future. After the pivot p is selected, it is swapped with the
last element of the array. Consequently, the right pointer j has to begin at the second to last
element. Since the right-hand partition contains only elements at least as great as the pivot, the
pivot must be the minimum of that partition. Therefore, once the partitioning is over, the last
element of the array, that is the pivot, can be swapped with the first element of the right-hand
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Figure 3.6. Speedups of QuickSorts with different thresholds (16–20) for when to fall back to
InsertionSort over a QuickSort with a threshold of 18 elements, on uniformly distributed integers.
Using ShellSort is not beneficial because many partitions undercut the thresholds significantly.

partition, that is the element with address i. The right-hand partition can be shortened to begin
at address i + 1 instead of i.

Base Cases When only a few elements remain in a partition, QuickSort’s overhead predomin-
ates such that InsertionSort lends itself as fallback algorithm. Falling back generates a speedup
of up to 1.67. As shown in Fig. 3.6, the optimal threshold for switching the sorting algorithm is
18 elements for 32-bit integers on uniformly distributed inputs. For 64-bit integers, the optimal
threshold is 17 elements. Notwithstanding, we set 18 elements to be the default threshold for
both data types to simplify matters since the impact is minuscule. For sorted and almost sorted
inputs, the threshold is higher since InsertionSort performs well on them, so falling back earlier
and, thus, ending the sorting process is better. Because QuickSort’s two pointers invert large
portions of reverse sorted inputs while partitioning, the same holds true for them, too, even
though they represent InsertionSort’s worst case.

To avoid unnecessary uses of InsertionSort, another base case is imaginable, namely termin-
ating when a partition contains at most one element. There are tremendous consequences
for the runtime depending on the exact implementation of the base cases, as shown later in
Section 3.4.2.

Recursion vs. Iteration One might be tempted to assume that the question of whether an
algorithm should be implemented recursively or iteratively would come down to convenience.
Due to the unit-cost of instructions, jumping to the beginning of a loop or to the beginning of a
function costs the same, as does managing arguments automatically through the regular call
stack or manually through a simulated one. Furthermore, in case of QuickSort, the compiler
turns tail-recursive2 calls into jumps back to the beginning of the function, so that one partition

2. A recursive call is tail-recursive if it is the final operation performed by the callee.

28



3.4. QuickSort

is sorted recursively and the other iteratively. All this would suggest a recursive QuickSort due
to its simpler implementation.

Which of these options is better unfortunately hinges on the compiler. Even parts of the
algorithms which are independent from the choice between recursion and iteration can be
compiled differently, such that there are implementations where being iterative is better than
being recursive and the other way around. A detailed analysis is given in Section 3.4.2.

Partition Prioritisation Always sorting the shorter partition first and putting the longer
partition on the call stack guarantees that the problem size is at least halved each step, so
that the call stack stores O(log 𝑛) elements at most. Unfortunately, this approach proves to be
detrimental to the quality of the compilation, as shown in Section 3.4.2. Instead, it is advisable
to always prioritise the same side. Whether the left-hand or the right-hand partition is sorted
first should not make any difference for the runtime but even this choice changes the quality of
the compilation; in this thesis, the right-hand partitions are prioritised.

Pivot Selection Another parameter to tune is the way in which the pivot is selected. The
following methods were implemented and benchmarked:
• Using the last element is the fastest method, requiring zero additional instructions.
• Taking the deterministic median of three elements, namely the first, middle, and last one, is
more computationally expensive since the position of the middle element must be calculated,
the median be determined, and the pivot be swapped with the last element of the array.

• A random element is most efficiently drawn on a DPU when using an xorshift random
number generator and rejection sampling [15].

• The random median is a combination of the previous two methods by taking the median of
three random elements. For simplicity, there is no check on whether an element is drawn
twice or thrice. The chances of this happening are low, though, since the partitions are
rather long.

Taking a median increases the probability of selecting a pivot that is neither particularly little
nor particularly great. This leads to more balanced partitions so that the call stack is less likely
to overflow and the base cases are reached faster. In want of branch prediction, a median is
expected to be beneficial on a DPU, for branch misprediction cannot hamper the runtime as on
CPUs (see Section 2.2). But as long as one of the deterministic methods is used, it is possible to
construct inputs where the runtime climbs up to O(𝑛2) [13]. Such a runtime could occur, for
example, when the pivot is always the minimum or maximum of the partition so that everything
is moved to the same partition. As a consequence, the problem size would be reduced by only
one element (namely the pivot) after each partitioning step. This problematic behaviour is
aggravated by the call stack overflowing easily because of the static partition prioritisation.

The random pivots circumvent this issue. Whilst the pivots could, by ill luck, also lead to the
same unbalanced partitions as the deterministic pivots, the worst-case expected runtime is in
O(𝑛 log 𝑛) [3]. The method median of medians [5] guarantees a runtime of O(𝑛 log 𝑛) but was
not implemented because a performant implementation would presumably be quite complex
and its benefit for this thesis minuscule.
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3.4.2. Investigation of the Compilation

The quality of the compilation is highly erratic to such an extent that— even with the same
pivots— one implementation variant may see a speedup of 1.33 over another one where none
would be expected. There are small details influencing the runtime. For instance, storing the
value of the pivot in a dedicated variable instead of accessing it through a pointer changes the
runtime by a few percentage points in both directions, depending on the rest of implementation.
But as hinted at in Section 3.4.1, there are four major parameters to examine: handling of the
base cases, recursion/iteration, pivot selection, and partition prioritisation. Before the findings
are discussed, the first parameter shall be explained in more depth.

Besides falling back to InsertionSort if 18 elements or fewer remain (‘treshold undercut’),
another base case is imaginable, namely a termination if at most one element remains (‘trivial
length’). Realistically speaking, it should not be needed to check for trivial lengths because
even though it would take just one additional instruction, such tiny partitions are rare, and
InsertionSort would terminate after a few instructions anyway. Nonetheless, its inclusion or
exclusion can have significant impact as does the position at which the checks for the two base
cases happen. The following handlings were benchmarked:
(1) If the length is trivial, terminate immediately. Otherwise, if the threshold is undercut, sort

with InsertionSort and terminate. If neither, partition the input and invoke QuickSort on
both partitions.

(2) If the threshold is undercut, check if the length is trivial and either terminate immediately
or sort with InsertionSort and terminate afterwards. Otherwise, partition the input and
invoke QuickSort on both partitions.
• This handling significantly reduces the number of checks on triviality.

(3) If the threshold is undercut, sort with InsertionSort and terminate. Otherwise, partition
the input and invoke QuickSort on both partitions.
• This handling forgoes the check on triviality completely at the cost of some unneeded
invocations of InsertionSort.

(4) If the threshold is undercut, sort with InsertionSort and terminate. Otherwise, if the length
is trivial, terminate immediately. If neither, partition the input and invoke QuickSort on
both partitions.
• This handling is nonsensical from a logical point of view, since the length cannot
be trivial if the threshold is not undercut. However, it gives the compiler an explicit
guarantee that the loop for partitioning does not end immediately, eliminating a possible
reason for the varying quality of the compilation.

(5) If the threshold is undercut, sort with InsertionSort and terminate. Otherwise, partition
the input. Then, check for either partition if its length is trivial and invoke QuickSort on it
if not.
• This handling, as well as the next two, eliminates some unneeded invocations of Quick-
Sort.

(6) Partition the input. Check for either partition if the threshold is undercut and invoke
either InsertionSort or QuickSort on it.
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(7) Partition the input. Check for either partition if its length is trivial or if the threshold is
undercut and invoke either InsertionSort, QuickSort, or nothing on it.

(8) If the threshold is undercut, terminate immediately. Otherwise, partition the input and
invoke QuickSort on both partitions. After all QuickSorts are done, sort the whole input
array with InsertionSort.

• This handling always does one pass of InsertionSort. For example, the other handlings
invoke InsertionSort roughly 91 times on 1024 uniformly distributed elements.

The performances of all benchmarked implementation on 32-bit integers are shown in Fig. 3.7.
The measurements were conducted on uniform input distributions, so the deterministic pivots
are, in expectation, of the same quality as the random ones.

Even when ignoring the differences between specific handlings for now, the high fluctuations
between the plots become immediately apparent. Plots within the same column share the same
method to select pivots, plots within the same row share the same prioritisation of partitions.
In general, it would be expected that plots within the same column are fairly similar, yet
prioritising the shorter partition is almost universally associated with an increase in runtime.
When focussing on the top-performing handlings, the speedup can fall below 1 down to 0.87.
There is no clear trend between the consistent prioritisations of either side, although the
difference can be huge in individual cases as well. However, recursive implementations are
more susceptible to the partition prioritisation than iterative ones.

The correlation of recursive and iterative performance is weak. On the one hand, there is,
for example, Handling (5) with deterministic medians and prioritisation of shorter partitions
where the runtimes are essentially the same. On the other hand, there is Handling (8) with
deterministic medians and prioritisation of right-hand partitions where recursion is slower by
more than a third. All in all, iterative implementations usually perform better, though, especially
when focussing on the top-performers of each pivot selection method.

The ranking of the different handlings is rather incoherent. Handling (5), which does not
call QuickSort on trivial partitions, fares the best out of all handlings decidedly, being amongst
the top performers across all benchmarked implementations. Handlings (6) and (7), which call
QuickSort even less often than Handling (5), are the polar opposite and bring up the rear of
the ranking every single time. Recursive implementations of Handling (2), where triviality is
checked for only if the threshold is undercut, are often worse than recursive implementations
of Handling (1), where triviality is always checked for, whilst it is the other way around for
iterative implementations. Interestingly, for all investigated implementations, the compiler
turns tail-recursive calls into jumps back to the beginning of the function, no matter how
convoluted the logic surrounding the call is.

These observations, however, only apply to 32-bit integers. Figure A.14 shows the same meas-
urements for 64-bit integers. Whilst the general trend for pivots, partition prioritisation, and
recursion/iteration hold true, the rankings are vastly different. Handling (5) is not undisputedly
the best anymore. Handlings (6) and (7) switch back and forth between being the worst and the
best handlings. Even the nonsensical Handling (4) manages to take the lead in a few cases. Most
notably, the two top-performing implementations using deterministic and random medians,
respectively, are actually recursive. Luckily, both use Handling (5) so we decided to make the
only difference between the default configurations of 32-bit and 64-bit QuickSort be the usage
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Figure 3.7. Mean runtimes of QuickSorts using Handlings (1) to (8) and different pivot selection
methods on uniformly distributed 32-bit integers. Left-hand partitions are prioritised in the first
rows, right-hand ones in the second rows, and shorter ones in the third rows.
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Figure 3.8. Mean runtimes of QuickSort on all benchmarked input distributions and data types.

of iteration (32-bit) and recursion (64-bit).
What is causing these huge disparities? There is a great variety in the compilations but some

of the common occurrences are …
• … one instruction more before (re-)starting to move the pointers, …
• … one instruction more while moving the left pointer by one element, …
• … one instruction more after the left pointer has stopped, …
• … more stores and loads when entering and exiting the function.

This focus on the left pointer i is partially explainable by it being used to calculate the final
position of the pivot and, thus, the inner boundaries of both new partitions. As explained earlier
under ‘Sentinel Values’, the right pointer j stops ultimately either on the left pointer i directly
(j == i) or on the element behind it (j == (i - 1)). Since the pivot is moved to address i,
the inner boundaries of the partitions are i - 1 and i + 1. Implementations using the right
pointer alone or both of them to calculate the boundaries were spot-checked to see whether
it alleviates the problems, but the results were mixed: from betterment over indifference to
worsening, everything was observable.

3.4.3. Evaluation of the Performance

Before turning to the general performance of QuickSort, we evaluate the ratio between costs
and benefits of the pivot selection methods. Looking again at Figs. 3.7 and A.10 shows that the
longer the input becomes, the more beneficial a median becomes, achieving small pay-offs for
the longest inputs. Moreover, the standard deviations of the runtimes, although not shown in
the figures for reasons of clarity, are cut roughly in half. Randomisation slows down noticeably,
so random pivots are disadvantageous if the input is known to be fairly random. However, the
decrease remains in the single digits percentagewise, supporting the findings by Geis [15] that
drawing random numbers on DPUs is quite cheap. For this reason, the random median is used
as default method throughout this thesis.
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Figure 3.8 shows the runtime of QuickSort in it default configuration. Figures A.11 and A.12
additionally contain the runtimes with deterministic medians as well as the standard errors
of the measurements. The mean runtimes are rather close across all input distributions, a
consequence of using random medians and of swapping elements equal to the pivot. In fact, it
is InsertionSort that primarily causes the discrepancies, as measurements with the threshold set
to one element prove. This also explains why QuickSort performs better, the longer an input
with Zipf’s distribution becomes: Zipf’s distribution generates many duplicates, and the longer
the total input becomes, the more partitions contain only one or two different values, speeding
InsertionSort up significantly.

One might expect QuickSort to perform even better on sorted and reverse sorted input, since
everything is either already in the correct position or because the two pointers quickly invert
large portions of the inputs. However, a side effect of swapping the pivot twice can be that many
elements are displaced by one position from where they should be in the sorted output. Take
reverse sorted inputs (starting with element 𝑛 for easier notation) as an example: Assume that
the element 𝑛/2 is selected as pivot out of the elements 𝑛, 𝑛/2, and 1. The pivot gets swapped
with the last element, that is with 1. The array equals now the sequence

⟨ 𝑛, 𝑛 − 1, … , 𝑛/2 + 1, 1, 𝑛/2 − 1, … , 3, 2, 𝑛/2 ⟩ .

Thereupon, the two pointers invert the rest of the input, producing

⟨ 2, 3, … , 𝑛/2 − 1, 1, 𝑛/2 + 1, … , 𝑛 − 1, 𝑛, 𝑛/2 ⟩ .

Swapping the pivot with the first element of the right-hand partition turns the array into

⟨ 2, 3, … , 𝑛/2 − 1, 1, 𝑛/2, 𝑛/2 + 2, … , 𝑛 − 1, 𝑛, 𝑛/2 + 1 ⟩ .

If the median is selected from random elements, subsequent partitioning will continue to roughly
halve the partitions, bringing 1 and 𝑛/2 + 1 closer to their output locations, so InsertionSort
will not need too many elements. Still, an implementation without swapping the pivot delivers
better performance for such cases, but in exploratory benchmarks, the performance on more
random input distributions suffered drastically.

Because of the partition pattern described above, the performance degrades on reverse sorted
inputs if the median is selected from deterministic elements. The pivot for the right-hand
partition will be selected out of the elements 𝑛/2 + 2, 3/4𝑛, and 𝑛/2 + 1. Obviously, the pivot
𝑛/2 + 2 barely reduces the problem size, and subsequent pivots exhibit essentially the same
behaviour, which is why the respective plots in Figs. A.11 and A.12 leave the charts. Indeed, an
overflow of the call stack occurs eventually.
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3.5. MergeSort

Two-way bottom-up MergeSort [23, 30, pp. 85 sq., 48, Section 2.3.1] repeatedly compares two
elements and merges them to form sorted couples. Once only couples (and perhaps one single
element) remain, the couples are merged into quadruplets, the quadruples into octuplets and
so on until a single sorted sequence remains. Sorted sequences are also referred to as runs.
MergeSort has a guaranteed runtime of O(𝑛 log 𝑛) and is the only stable sorting algorithm with
subquadratic runtime presented in this chapter. Its biggest drawback is that additional space of
size Θ(𝑛) is needed.

3.5.1. Presentation of Key Aspects

Starting Runs Instead of starting by merging runs of length 1, that is individual elements, it
is beneficial in practice to first subdivide the input and use either InsertionSort or ShellSort on
the individual subdivisions. These larger starting runs allow to skip a few of the early rounds
of merging. For simplicity, all starting runs have the same, predefined length with possible
exception of the last one which can be shorter. A substantial downside to ShellSort is that
whilst it does allow to sort bigger starting runs quicker, it is not stable unlike InsertionSort. If
MergeSort is supposed to sort stably, then we use InsertionSort.

Unlike QuickSort, where each partition naturally acts as sentinel for the subsequent one, it is
necessary to temporarily place sentinels values in front of each starting run and later restore the
overwritten values of the preceding run. The step sizes used for ShellSort — namely ℎ = (1, 6)
for up to 48 elements, and ℎ = (1, 5, 12) for more—have been chosen based on the findings in
Section 3.2, according to which these step sizes offer top performance for uniformly distributed
inputs and medial performance for reverse sorted inputs. Spot-check inspection suggest no
deterioration of InsertionSort’s and ShellSort’s compilation due to inlining.

Memory Footprint A simple implementation of MergeSort (termed full-space) writes all
merged runs to an auxiliary array, raising the need for space for 𝑛 additional elements. After
a round is finished and all pairs of runs have been merged, the input array and the auxiliary
array switch roles and the merging begins anew. If the final sorted elements are supposed to be
saved in the original input array, a final round with a write-back from the auxiliary array to the
input array is needed if the number of rounds is odd.

A slightly more sophisticated implementation (termed half-space) needs space for only 𝑛/2
additional elements [26, Section 2.5]: When two adjacent runs are to be merged, the first one is
copied to an auxiliary array. Then, the copy and the second run are merged to the beginning
of the first run. As a side effect, no write-back is ever needed and, additionally, the merging
of two runs can be terminated prematurely once the last element of the copied run is merged,
since the last elements of the other run are already in place. To guarantee that the auxiliary
array does indeed hold only 𝑛/2 elements in the worst case, one needs to make sure that the
first runs are never longer than the respective second runs. There can only ever be at most one
run shorter than the others, namely the last one. For this reason, the formation of starting runs
now begins at the end of the input array and proceeds to the front. Likewise, merging pairs of
runs also begins with the last pair and works its way forward to the front.
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Further optimised, half-space MergeSort would not need to copy the first runs immediately.
It suffices to search for the foremost element of the first run which is greater than the first
element of the second element. All previous elements are already in the correct position so only
the following elements need to be copied to the auxiliary array. This deferred copying, although
examined during development, was not in use when measuring runtimes since it unfortunately
complicates the next optimisation.

Unrolled Flushing There are four common reasons for flushing, that is writing consecutive
elements unconditionally:
1. When two runs are merged and the end of one of them is reached, that is, when one run is

depleted, the remaining elements of the non-depleted run can be moved safely to the output
location. Especially with the sorted, reverse sorted, and almost sorted input distributions,
the number of remaining elements will be high.

2. The number of runs is odd, so the full-space MergeSort moves the last run to the output
location unconditionally.

3. The full-space MergeSort may have to write all elements from the auxiliary array back to
the input array if the former contains the final sorted sequence.

4. Before each merge of a pair of runs, the half-space MergeSort copies the first run to the
auxiliary array.

Therefore, flushing accounts for a considerable part of the runtime, and reducing the loop
overhead caused by variable incrementations and bounds checking is helpful. This can be done
via unrolling by a certain unroll factor 𝑥: As long as at least 𝑥 elements still need to be flushed,
a loop with step size 𝑥 is executed, and in each iteration, 𝑥 elements are moved. Making 𝑥 a
compile-time constant enables the compiler to implement this moving through 𝑥 instruction
which use constant, pre-calculated offsets. Once fewer than 𝑥 elements remain, an ordinary
loop with step size 1, which moves elements individually, is used. In good cases, this approach
reduces the loop overhead to an 𝑥 th, whilst in bad cases, where fewer than 𝑥 elements are to be
flushed, the overhead is increased by only one additional check.

Due to time reasons, we refrained from doing automatic and extensive benchmarks and relied
on manual and exploratory benchmarks to come up with the following strategy: When the
full-space MergeSort performs a write-back or when the half-space MergeSort copies the first
run, the unroll factor is set to the starting run length. In all other cases, the unroll factor is set
to 24, which proved to be a sweet spot. This strategy, albeit not optimal, makes the MergeSorts
significantly faster. Sorting sorted, reverse sorted, and almost sorted inputs experiences a
speedup of up to 1.4, and sorting more random inputs still experiences a speedup above 1 on the
whole. In the few cases where unrolling is harmful and the speedup drops below 1, the speedup
stays close to 1 nonetheless.

Unrolled Merging The following simple and easily scalable technique, which significantly
reduces bounds checks, was employed: Before merging two runs, check whose last element
is less, that is, determine which run will be depleted first. This run is referred to as less run,
whilst the other one is referred to as greater run henceforward. As longs as at least 𝑥 unmerged
elements remain in the less run, execute an unrolled loop which merges the next 𝑥 elements of
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both runs. Once fewer than 𝑥 elements remain in the less run, do the same with 𝑥 ÷ 2 many
elements. Once fewer than 𝑥 ÷ 2 many remain in the run, execute an ordinary loop with step
size 1 which checks after each merge of an element from the less run whether the run gets
depleted therethrough.

We found an unroll factor ofmin{ℓ, 16}, where ℓ is the starting run length, to be a good choice.
A drawback of unrolling is the increased kernel size, since the instruction count of an unrolled
loop is increased roughly 𝑥 fold. Larger unroll factors lead to an IRAM overflow.

A more refined unrolled merging can be deduced from InsertionSort not using a dedicated
pointer to access a preceding element. Recall how InsertionSort utilises the pointer to the
current element together with an offset of -4. A similar technique can be used with MergeSort,
which maintains two pointers i and j, each pointing the current element of a run to merge.
If, for example, it holds *i <= *j, then the next element can be loaded via *(i + 1). Finally,
depending on whether *(i + 1) <= *j holds, either both pointers i and j are incremented
by 1 or pointer i is incremented by 2. Unluckily, the quality of the compilation suffers from
this technique, leading to its dismissal.

3.5.2. Investigation of the Compilation

A significant portion of the runtime is spent on the repeated comparison of elements in a pair of
runs, followed by a write of the less element to the output. Figure 3.9a shows a straightforward
implementation of an unrolled loop performing such comparisons and writes. The code makes
use of two pointers i and j which are initially set to the first elements of the runs. To get their
values, they are simply dereferenced. After the output out[k] has been set in iteration k, the
respective pointer of the less element is incremented.

Despite the succinctness of the C code, the resulting assembler code is of subpar quality.
Depending on the run from which an element got merged in the previous iteration, an iteration
takes either 7 or 8 instructions. This is a consequence of loading the values of both dereferenced
pointers at the beginning of each iteration despite one of the values not having changed since
the last iteration. Figure 3.9b shows an alternative implementation, whose compilation results
in four instructions per iteration. This was achieved by dereferencing the pointers i and j
before the loop begins and storing the values in dedicated variables. The comparisons and
writes use only these dedicated variables, of which only one gets updated per iteration. A more
detailed description of the compilations is given in the caption of Fig. 3.9.

It can only be speculated as to the reason for the poor compilation of the simpler implement-
ation. Perhaps the constant reloads are related to the ability of tasklets to write to any WRAM
address. Theoretically, it could be that the value obtained by dereferencing the non-incremented
pointer changes between two subsequent iterations. This explanation is not fully satisfactory
as it would imply yet another load instruction before writing out[k].

Unluckily, only with the full-space MergeSort does this change to dedicated variables make
iterations take 4 instructions unanimously. With the half-space MergeSort, some merge itera-
tions take 5 instructions. The reason is that the second pointer j is never incremented directly.
Instead, whenever an element of the second run is merged, a counter is incremented and, then,
the new address of pointer j is calculated by taking the address of the first element of the second
run and adding the counter. The fix is to change the loop which iterates over the pairs of runs
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1 #pragma unroll
2 for (int k = 0; k < 16; k++) {
3 if (*i <= *j) {
4 out[k] = *i++;
5 } else {
6 out[k] = *j++;
7 }
8 }

1 // iteration k
2 lw ri∗, ri, 0
3 lw rj∗, rj, 0
4 add rtmp, rj, 4
5 jle ri∗, rj∗, .LABEL_k_i
6 move ri∗, rj∗
7 move rj, rtmp, true, .LABEL_k_out
8 .LABEL_k_i:
9 add ri, ri, 4

10 .LABEL_k_out:
11 sw rout, 4 × k, ri∗

// load *(i + 0)
// load *(j + 0)
// tmp ← j + 1
// jump if *i ≤ *j
// overwrite ri∗
// j ← tmp; jump

// i ← i + 1

// out[k] ← *i

(a) This code takes 8 instructions per iteration. First, the pointers are dereferenced (lns. 2, 3). Then, the
resulting address from incrementing pointer j is calculated (ln. 4). If the first run contains the less current
element, it is jumped to line 9, where pointer i is incremented. Lastly, the less element *i is written to the
output (ln. 11). If the second run contains the less current element, the register holding *i is overwritten
with *j (ln. 7). Then, a combo operation (ln. 7) finally applies the result from incrementing pointer j and
jumps to the line where the output is set.

We do not know why pointer j gets temporarily incremented. According to the documentation, an add
instruction is compatible with the true flag, meaning the add instruction in line 4 and the move instruction
in line 7 could be fused.

1 int val_i = *i, val_j = *j;
2 #pragma unroll
3 for (int k = 0; k < 16; k++) {
4 if (val_i <= val_j) {
5 out[k] = val_i;
6 val_i = *++i;
7 } else {
8 out[k] = val_j;
9 val_j = *++j;

10 }
11 }

1 // iteration k (val_i ≤ val_j)
2 jgt ri∗, rj∗, .LABEL_k_j
3 .LABEL_k_i:
4 sw rout, 4 × k, ri∗
5 add ri, ri, 4
6 lw ri∗, ri, 0

// jump if val_i > val_j

// out[k] ← val_i
// i ← i + 1
// val_i ← *(i + 0)

1 // iteration k (val_i > val_j)
2 jle ri∗, rj∗, .LABEL_k_i
3 .LABEL_k_j:
4 sw rout, 4 × k, rj∗
5 add rj, rj, 4
6 lw rj∗, rj, 0

// jump if val_i ≤ val_j

// out[k] ← val_j
// j ← j + 1
// val_j ← *(j + 0)

(b) This code takes 4 instructions per iteration. There are 16 cascaded iterations in the assembler code, all of
them writing the elements of the first run to the output (top). There is an analogue cascade writing only
elements of the second run to the output (bottom). Labels allow to switch between the cascades. First, it is
checked whether the cascade should be changed (ln. 2). Then, the output is set (ln. 4), the respective pointer
incremented (ln. 5), and the new value from dereferencing loaded (ln. 6).

Figure 3.9. Two C implementations of an unrolled loop which merges 16 elements, contrasted with
their compilations. Only the assembler codes of one iteration are shown, as all iterations follow
the same scheme; a sixteenfold cascade of the given assembler codes yields the whole assembler
codes of the loops. The pointers i and j point initially to the first elements of the runs. The serially
numbered registers (‘r…’) and jump labels (‘.LABEL…’) were renamed to aid understanding. Note
that the data type int is 4 B large, which is why all offsets are multiples of four.
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Figure 3.10. Mean runtimes of the full-space MergeSorts with and without write-backs and the
half-space MergeSort on 32-bit integers, for 𝑛 = 2 𝑖 and 𝑛 = 2 𝑖 + 1 with 𝑖 = 1, … , 10.

to merge. Rather than using the ends of the second runs as natural loop index, it has to be
iterated over the ends of the first runs.

A last mention shall be given to the merge function used by the half-space MergeSort. Passing
the copied run as second argument and the uncopied run as the first one nets a noticeably
speedup over an implementation with flipped arguments and, of course, flipped logic. Sadly, we
could not pinpoint the fundamental cause for this phenomenon.

3.5.3. Evaluation of the Performance

Three implementations using InsertionSort on starting runs of length 14 have been benchmarked:
full-space MergeSort without write-backs, full-space MergeSort with write-backs, and half-space
MergeSort. The results are shown in Figs. 3.10, A.15 and A.16. Besides the mean runtimes on all
benchmarked input distributions, Figs. A.15 and A.16 additionally contain the standard error
of the measurements. Note that the benchmarked input lengths have been chosen in such a
way that the plots exhibit MergeSort’s characteristic zigzagging to the full extent: The merging
process can be visualised as binary tree, with the starting runs as leaves and all other runs being
inner vertices. Two vertices are siblings if the corresponding runs get merged together; the
root contains the final sorted run. This way, the height of the tree is equal to the number of
rounds of merging. For 𝑛 = 2 𝑖 input elements, the tree is complete, and the normalised runtime
is locally minimal. For 𝑛 = 2 𝑖 + 1 input elements, the root has a leaf with one element as child,
and the normalised runtime is locally maximal, as the number of rounds increases by one to
accommodate for just a single element.

The measurements show that any MergeSort guarantees a runtime of Θ(𝑛 log 𝑛) for the
benchmarked input distributions as expected. The differences in runtime between the different
input distributions get smaller with increasing input length and are ascribable to Insertion-
Sort and to the differing effectiveness of unrolling flushes. In fact, InsertionSort is the main
reason why sorted inputs take the shortest and reverse sorted ones the longest; cases where the
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usage of InsertionSort worsened the runtime are unbeknown. The differences across the input
distributions become smaller with increasing input length but remain large even for 𝑛 ≈ 1000
elements. For the full-space MergeSorts and with 𝑛 ≈ 1000, reverse sorted inputs get sorted
85 % slower than sorted inputs of 32-bit integers and 100% slower than sorted inputs of 64-bit
integers. For the half-space MergeSort, these disparities climb to 125 % and 140%, respectively.

The half-space MergeSort delivers a strong performance despite its smaller memory footprint.
On sorted and zero-one inputs of length 𝑛 ≈ 1000, it takes the lead over the full-space MergeSort
without write-backs for both 32-bit and 64-bit integers, since the second runs need not be
flushed and the additional copying of the first runs is unrolled. On almost sorted inputs, they are
essentially on par. For the other inputs, the speedup of half-space MergeSort over the full-space
MergeSort does not drop below 0.89. The gap to the full-space MergeSort with write-backs is
even smaller. This slowdown, albeit small, is likely because of the elements of the first runs
being both copied and moved and of most elements of the second runs being moved forwards
anyway.

Appendix A.5 contains further measurements on MergeSort, showing why a starting run
length of 14 is a good choice. Figures A.17 and A.18 show the average runtimes of starting
runs of lengths 12 to 16, all sorted with InsertionSort. Overall, the differences are small, yet
a length of 14 delivers a solid performance throughout all benchmarked input distributions.
Figures A.19 and A.20 include longer starting runs of lengths between 24 and 96 in order to
see whether giving up stability by using ShellSort can yield substantial gains. The disparities
between the runtimes of the different starting run lengths are strikingly small despite the wide
range of lengths. By and large, however, the speedups, if any, are not big enough to warrant
consideration of both a stable and an unstable MergeSort configuration in this thesis.
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3.6. Interim Conclusion

This section offers a summary of the findings on the algorithms presented in this chapter. It
also gives an outlook on future improvements. Figure 3.11 serves as succinct overview of the
runtimes on all benchmarked input distributions and data types.

InsertionSort This algorithm works in place and is stable. It is arguably the best for short
inputs with up to 16 elements as it offers the best performance on the benchmarked input
distributions and, additionally, exhibits both the stability and the in-place property. Sentinel
values enabled significant speedups— a theme shared with most sorting algorithms. However,
there is still room for improvement as its compilation is suboptimal, especially in case of the
InsertionSort with implicit sentinel values.

As a last point, a strong contender to InsertionSort shall be mentioned, namely sorting
networks [9, 26, Chapter 13]. These algorithms work for a fixed input length and swap elements
according to a series of predefined comparisons. Testing various code snippets [9, p. 9, 29, 37]
suggests a large potential for further speedup.

ShellSort This algorithm works in place but is unstable. It offers a significant speedup over
InsertionSort as long as the input is fairly distant from being sorted. Optimising it for long
inputs will take some effort, though.

HeapSort This algorithm works in place but is unstable. The runtime is guaranteed to be
in O(𝑛 log 𝑛) and also proved to be mostly oblivious to the benchmarked input distributions.
Nevertheless, it is severely outpaced by QuickSort and MergeSort, as becomes quite clear in
Fig. 3.11. Unless the runtime guarantee is absolutely needed and MergeSort is not an option
because of its memory footprint, HeapSort should not be used. Its implementation is complicated
by the optimal sifting direction being dependent on the data type. Eyebrow-raising observations
during development suggest that its compilation can still be improved.

All benchmarked HeapSorts use a binary heap so an obvious endeavour would be to switch
to tertiary heaps. Exploratory implementations, however, show that the performance suffers
from this change.

QuickSort This algorithm works out of place and is unstable. Its runtime is in O(𝑛 log 𝑛) only
in expectation, but the worst-case runtime of O(𝑛2) is, thanks to random medians being selected
as pivots, highly unlikely. QuickSort generally delivers top performance which becomes even
better with deterministic medians as pivots if the input is known to be random enough. There is
serious work needed to be done, however. So far, there is no prioritisation of shorter partitions,
which is needed to prevent an overflow of the call stack, due to problems in the compilation.
These problems currently also make both recursion and iteration necessary, depending on the
data type, and we cannot rule out other impairments hidden in the compilation.

Besides fixing these issues, future work could revolve around different partitioning patterns
similar to those of dual-pivot [46] or patter-defeating QuickSort. The latter makes use of Heap-
Sort as fallback algorithm in worst cases. Since the maximum input length is rather limited
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on DPUs, perhaps a carefully tuned ShellSort may be used instead. For this reason, Fig. 3.11
includes also ShellSort, which starkly contrasts HeapSort despite its yet unoptimised step sizes.

MergeSort This algorithm works out of place but is stable. The runtime is guaranteed to be
in O(𝑛 log 𝑛) although it fluctuates somewhat, depending on the input distribution and input
length. Having said that, the leeway to QuickSort is not too big most of the time, making it
unlikely that a stabilised QuickSort with likewise increased memory footprint would be much
of a benefit. Deferred copying of runs and fine-tuned unrolling could make the runtime of
MergeSort drop even further.

Some allowance on the starting run lengths does not affect the average runtime too much,
so the zigzagging of the runtime could be dampened by dynamically adjusting the starting
run length. A not-yet-implemented strategy to speed up flushing is the interpretation of two
consecutive 32-bit integers as one 64-bit integer which then gets loaded and stored away in just
two 64-bit instructions instead of four 32-bit ones. The compiler can be prescribed to do so by
casting the involved 32-bit integer pointers to their 64-bit counterparts. Special care, however,
is required with regards to the alignment, as the addresses of 32-bit integers are aligned to four
bytes, whereas those of 64-bit integers are aligned to eight bytes [44, DPU ABI – Data types]. A
trivial implementation of such a flushing yielded both gains and losses for the runtime in the
single-digits percentagewise, depending on the MergeSort and the input length. A feature, last
but not least, worthwhile to implement should be the detection of natural runs [26, Section 2.6,
48, Section 2.3.2], that is runs already present in the input.
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Figure 3.11. Mean runtimes of the main algorithms presented in this chapter. The tinted areas
denote the three-sigma range, that is the 99.7 % confidence intervals.
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Chapter 4.

Sorting in the MRAM

This chapter is concerned with sorting data which resides in the MRAM. Both a sequential
sorting algorithm for execution by a single tasklet as well as a parallel sorting algorithm for
execution by a whole DPU are presented. We restrict ourselves to varieties of MergeSort since
it allows for stable sorting and, also, the performance of MergeSort proved to be competitive in
sorting WRAM data in Chapter 3. Next to the unit-cost of instructions, key characteristics of the
DPU architecture which are of especial importance in this chapter are the memory hierarchy
and inter-tasklet communication through shared memory.

A challenge in designing an algorithm for MRAM data is the management of data transfers
between the large MRAM and the small WRAM. A key aspect of the transfer management is the
use of the sequential reader, that is a software abstraction provided by UPMEM which simplifies
moving data from theMRAM to theWRAM. Section 4.1 presents the advantages of the sequential
reader and explains its usage and inner workings. Section 4.2 addresses the segmentation of
the WRAM into several buffers which are needed by both sequential readers and MergeSort
itself. Section 4.3 deals with the sequential MRAM MergeSort, shows how the sequential reader
can be improved upon, and concludes with an analysis of the performance. Finally, the parallel
MRAM MergeSort is built from the sequential one and analysed in Section 4.4.

In some instances, we employ T to denote the data type of the input and sizeof(T) to denote
the size of an element of type T in bytes. Every measurement presented in this chapter was
repeated ten times, which is a sufficient number given the large inputs and the low runtime
variance of the MRAM MergeSorts. Appendix B contains further measurements but the ones
essential for following the content of this chapter are also presented in figures herein.
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4.1. The Sequential Reader

A DMA takes half a cycle per transferred byte. On top of that, each reading DMA comes with an
additional overhead of 77 cycles and each writing DMA with an overhead of 61 cycles. To dilute
this overhead, MRAM data is preferably processed in blocks using the functions mram_read
and mram_write. The benefit of blockwise processing is so high that, according to Gómez-Luna
et al. [18, p. 11], using mram_read and mram_write remains beneficial compared to accessing
single MRAM elements even if only an eighth of the transferred data are actually of interest.
However, the functions mram_read and mram_write do come with some constraints. Both the
target and the source address must be aligned to 8 bytes. Also, the number of transferred bytes
must be at least 8, at most 2048, and a multiple of 8. Furthermore, programmers are tasked with
maintaining a buffer in the WRAM and transferring data at appropriate times, which, given
that the WRAM is more than a thousand times smaller than the MRAM, is likely frequent.

Since processing MRAM data consecutively is a common occurrence, UPMEM provides a data
structure called sequential reader. Through a set of C functions, a sequential reader automates
the read-in process and, thereby, removes any need to care for the alignment of addresses or the
loading of new data. On top of that, UPMEM claims that ‘[…] this abstraction implementation
has been optimized and will provide better performance than a standard C check of the cache
boundaries.’ [44, Memory management – Sequential readers]

Of course, a sequential reader still requires a WRAM buffer. Its size in bytes is determined
by the compile-time constant SEQREAD_CACHE_SIZE, which can be set to either 32, 64, 128,
256, 512, or 1024. The allocation of the buffer on the heap happens through the function
seqread_alloc and is worth a closer look. Remember that the heap is actually implemented
as a never-decreasing stack. This means that new memory is only ever allocated behind the
heap pointer, which stores the end of the heap. With SEQREAD_CACHE_SIZE = 2 𝑖, the 𝑖 least
significant bits of the first byte address in the buffer are required to be zero, for reasons explained
shortly. Therefore, padding is introduced by having the heap pointer skip to the next higher
multiple of SEQREAD_CACHE_SIZE if not already on such a multiple. Due to the nature of a stack,
this has the drawback that the padding can never be allocated for something else. After the
skip of the heap pointer, a total of 2 × SEQREAD_CACHE_SIZE many bytes are allocated, also for
reasons explained shortly. All in all, the memory footprint of a sequential-read buffer is at least
2 × SEQREAD_CACHE_SIZE many bytes and less than 3 × SEQREAD_CACHE_SIZE many.

The function seqread_init instructs a sequential reader to load data from a specified
MRAM address into its buffer. Conceptually, the whole MRAM is divided into pages of size
SEQREAD_CACHE_SIZE. To load data from the specified MRAM address, the address is rounded
down the the next multiple of SEQREAD_CACHE_SIZE, which yields the beginning of the page
containing the MRAM address. Then, 2 × SEQREAD_CACHE_SIZE many bytes are loaded so that
the buffer holds two pages. This way, data of some long, compound type at the end of the first
page are fully loaded even if extending into the other page.

The function seqread_init also returns a pointer to the corresponding position of the
specified MRAM address within the sequential-read buffer, to which we will refer as pointer
to the current element. Due to the page model, this pointer may not be set to the beginning
of the buffer. To access the current element, one simply dereferences the pointer. Calling the
function seqread_get advances this pointer by a given number of bytes, which cannot be
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Figure 4.1. An exemplary sequential reader with SEQREAD_CACHE_SIZE set to 16 being used to
transfer 32-bit elements from the MRAM (top row) into the sequential-read buffer (bottom row).
The hexadecimal numbers denote the addresses of the respective elements within the MRAM. Only
the elements with addresses from 0x28 to 0x74 are sought to be read, however, the page model
requires that the elements with addresses 0x20, 0x24, and 0x78 to 0x8c be also loaded at some
point. The pointer buffer constantly points to the beginning of the sequential-read buffer. The
pointer from points to the MRAM address of the first byte within the buffer. The pointer curr
moves from left to right, 4 bytes at a time. No byte of the second half of the buffer is ever read as
the elements fit perfectly within the first half.

greater than SEQREAD_CACHE_SIZE; this way of specifying bytes allows the sequential reader to
support arbitrary data types. Once the pointer to the current element ends up in the second
half of the buffer, it is set SEQREAD_CACHE_SIZE many bytes back so that it points to an address
in the first half again. In addition, the MRAM address from which to read is increased by
SEQREAD_CACHE_SIZE many bytes, and the next two subsequent pages are loaded. This means
that the page stored in the second half of the buffer is loaded from the MRAM again but stored
in the first half this time. Figure 4.1 visualises an intermediate state of a sequential reader,
showcasing its characteristic read behaviour.

The acclaimed speedup through more performant bounds checks happens within the function
seqread_get, which in turn calls the function __builtin_dpu_seqread_get. An inspection
of its compilation with SEQREAD_CACHE_SIZE = 2 𝑖 reveals the use of a combo instruction. The
pointer to the current element is advanced by invoking an add instruction to increase the stored
address. This add instruction uses a condition to detect the generation of the 𝑖th carry bit. To
be more precise, this carry bit is set to op1[i:0] + op2[i:0], where op1[i:0] and op2[i:0]
are the 𝑖 + 1 least significant bits of the involved operands, in this case the pointer and the
number of bytes to advance. [44, DPU Handbook – Specific Conditions Common To Addition
and Subtraction] Thanks to the carefully chosen size and alignment of the buffer, the generation
of such a carry bit signifies that the pointer to the current element has left the first buffer half.
This means that it takes just one instruction to advance the pointer, check the buffer boundaries
and jump over— if needed— the subsequent instructions responsible for updating the whole
reader.
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4.2. The Triple Buffer

Before beginning to merge, it is yet again beneficial to form starting runs. The formation
works by loading a block of MRAM data into the WRAM, sorting it with one of the algorithms
presented in Chapter 3, and writing the sorted block back to the MRAM. As those sorting
algorithm rely on the data being present entirely within the WRAM, the functions mram_read
and mram_write are used directly. Contrary to the WRAM MergeSorts with starting runs of
length 14, the lengths of the starting runs of the MRAM MergeSort go well into the hundreds.
The reason is that longer starting runs reduce the number of rounds of MRAMmerging and, thus,
reduce DMAs, which are relatively costly. However, again similar to the WRAM MergeSorts, it
can be beneficial to slightly reduce the starting run length to achieve more balanced and faster
rounds. Nonetheless, the impact on the total runtime between 500, 600 and 700 elements per
starting run is in the magnitude of one per mille, so for the sake of simplicity, the starting run
length is set to the maximum amount of data which a tasklet can store in the WRAM.

This does raise the question how a large WRAM buffer for the starting run formation can
be allocated while still leaving memory for the two sequential-read buffers used later during
merging. The answer is a triple buffer which consists of a general-purpose buffer followed
by two consecutive sequential-read buffers. If no sequential reader is in use, the triple buffer
can be regarded as one contiguous buffer. To initialise the triple buffer, a tasklet first calls
mem_alloc to allocate CACHE_SIZE many bytes on the heap, with CACHE_SIZE being a compile-
time constant divisible by 8. This memory is referred to as cache and will be used later to
store merged runs. Subsequently, the tasklet calls seqread_alloc twice. Due to the stack
nature of the heap, the two sequential-read buffers are allocated directly behind the cache.
To ensure the contiguity of the triple buffer if more than one tasklet is present, a mutex is
employed such that only one tasklet initialises its triple buffer at a time. The entire triple buffer
has the size TRIPLE_BUFFER_SIZE ≔ CACHE_SIZE + 4 × SEQREAD_CACHE_SIZE, which is, for
simplicity, the minimum number of allocated bytes and, therefore, the same for all tasklets even
if some calls of seqread_alloc introduced padding. Note that padding may appear in front
of each first sequential-read buffer only, since the heap pointer is necessarily at a multiple of
SEQREAD_CACHE_SIZE after any call of seqread_alloc. Because of otherwise wastedmemory, it
makes little sense to set CACHE_SIZE to a value which is not a multiple of SEQREAD_CACHE_SIZE.
The optimal values for CACHE_SIZE and SEQREAD_CACHE_SIZE are determined in Section 4.3.3.

cache padding first buffer second buffer

TRIPLE_BUFFER_SIZE

58 5c 60 64 68 6c 70 74 78 7c 80 84 88 8c 90 94 98 9c a0 a4 a8 ac b0 b4 b8 bc

Figure 4.2. An exemplary triple buffer for 32-bit elements with CACHE_SIZE set to 32 and
SEQREAD_CACHE_SIZE set to 16. The hexadecimal numbers denote WRAM addresses. Note that the
padding is still used when regarding the triple buffer as one contiguous buffer. Then, however, the
last bytes of the second sequential-read buffer are unused.
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4.3. Sequential MergeSort

The MRAM MergeSort is based on the full-space WRAM MergeSort as presented in Section 3.5
so only the adaptations of the merging to the memory hierarchy are discussed. As precondition
for the presented algorithm to work, it is required that run sizes be multiples of eight and that
the runs and the output location be aligned to 8 B. This precondition simplifies DMAs and is
trivially met for 64-bit elements. To meet it for 32-bit elements, one can insert a single dummy
element, set to the maximum possible value, into the input and discard the last element of the
sorted output.

4.3.1. Presentation of Key Aspects

The idea underlying MRAM merging is the following: First, initialise a sequential reader on
either run. Then, repeatedly compare the current elements, write the less element to the cache,
and read the next element. Whenever the cache is full, empty it by writing its content to
the output location. Once the end of the less run is reached, stop comparing and empty the
cache. Finally, flush the greater run by transferring its remainder from the MRAM to the output
location with the help of the entire triple buffer.

During a merge, checks on the depletion of the less run and on the fill level of the cache
are needed. To reduce the frequency of the former, the merge procedure consists of two
tiers as shown in Algorithm 4.1. The first tier is in operation as long as there are more than
UNROLL_FACTOR many elements left to merge in the less run. This is verifiable through the
function seqread_tell, which returns the corresponding MRAM address of an element within
a sequential-read buffer (ln. 3). First, an unrolled loop with UNROLL_FACTOR many iterations
is executed, with each iteration comparing the current elements of both runs, writing the less
one to the cache, and advancing the respective pointer (Algorithm 4.2). The less run cannot
become depleted during this loop, so depletion checks after each iteration are unnecessary.
Afterwards, it is checked whether the cache is filled with MAX_FILL_LEVEL many elements (ln. 5),
with MAX_FILL_LEVEL being a multiple of UNROLL_FACTOR and MAX_FILL_LEVEL×sizeof(T) ≤
CACHE_SIZE being amultiple of eight. If the fill level is too low, it is jumped back to the beginning
of the tier. If, however, the maximum is indeed reached, the cache is emptied before jumping
back (lns. 6 to 8). Because the output location is aligned to 8 B and MAX_FILL_LEVEL×sizeof(T)
is a multiple of eight, emptying the cache is possible through a simple call of mram_write.

Once there are UNROLL_FACTOR many elements or fewer left in the less run, the second tier
begins. This one is structurally equal to the first tier with a single exception, for there is
no guarantee that the unrolled loop will be executed in full: A depletion check now happens
whenever an element of the less run is written to the cache. When it occurs, the cache is emptied
and the greater run flushed, completing the merging. To flush the run, its remainder is iteratively
transferred from its original position in the MRAM to the output location in blocks of size
2048 B using mram_read and mram_write. Since the sequential readers are of no use anymore,
the whole triple buffer may be used during the transfers in case that CACHE_SIZE is below 2048.
Emptying the cache requires checking the fill level in case of 32-bit elements as input. Should
the number of elements within the cache be odd, then the size of the cache content is not a
multiple of eight. In addition, the size of the remainder of the greater run is also not a multiple
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Algorithm 4.1. Two-tiered merging of two MRAM runs, where the first one is the less run. In the
event of the second run being less, flip all indices.
Data : sequential readers readers[2], pointers curr[2] to current elements, pointers ends[2] to

last elements, output location out, cache cache
Result:both runs merged together and written to out

1 𝑖 ← 0 ▷ number of elements in cache
2 early_end ← ends[0] – UNROLL_FACTOR + 1 ▷ no depletion certain until this point
3 while seqread_tell(curr[0], readers[0]) < early_end do ▷first tier
4 Merge UNROLL_FACTOR many elements without checking for depletion (Algorithm 4.2).
5 if 𝑖 = MAX_FILL_LEVEL then
6 mram_write(cache, out, MAX_FILL_LEVEL × sizeof(T))
7 𝑖 ← 0
8 out ← out + MAX_FILL_LEVEL
9 end if

10 end while
11 while true do ▷ second tier
12 Merge UNROLL_FACTOR many elements with checking for depletion (Algorithm 4.2).
13 if 𝑖 = MAX_FILL_LEVEL then
14 mram_write(cache, out, MAX_FILL_LEVEL × sizeof(T))
15 𝑖 ← 0
16 out ← out + MAX_FILL_LEVEL
17 end if
18 end while

of eight, given that both the sizes of the two runs as well as MAX_FILL_LEVEL × sizeof(T) were
such. For this reason, the current element of the greater run is moved to the cache in order
to bring the size of its content to a multiple of eight, rendering it unproblematic to empty the
cache and flush the greater run via mram_read and mram_write.

4.3.2. Investigation of the Compilation

The most frequently used sequential-reader function is seqread_get, followed at some distance
by seqread_tell and, at even more distance, seqread_init. Each use of those functions
constitutes a proper call as they cannot be inlined due to being a part of a different translation
unit. A function call comes at non-negligible cost since every argument has to be loaded into
the respective register, the jump to the function itself be performed, the stack pointer and return
address be saved and reloaded, modified registers be restored if need be, and the jump back to
the return address be performed. Since the DPU architecture is fundamentally compute-bound,
function calls are a serious impediment to performance. In Chapter 3, this has already been an
argument in favour of the oft-used InsertionSort whose short implementation lends itself to
inlining.

Earlier attempts at reducing function calls included maintaining a counter on the number of
elements left to make seqread_tell obsolete. This alone yielded prominent speedup while still
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Algorithm 4.2. Merging UNROLL_FACTOR many elements. This algorithm is part of Algorithm 4.1,
meaning any change to a variable carries over. In the event of the second run being less, flip the
indices in the inner if block and move it down into the else block.
Data : sequential readers readers[2], pointers curr[2] to current elements, pointers ends[2] to

last elements, output location out, cache cache, number 𝑖 of elements in the cache
Result:UNROLL_FACTOR many elements merged to cache[𝑖 .. 𝑖 + UNROLL_FACTOR – 1]

1 for 𝑘 ← 1 to UNROLL_FACTOR do ▷ unrolled loop
2 if *curr[0] ≤ *curr[1] then
3 cache[𝑖++] ← *curr[0]
4 if seqread_tell(curr[0], readers[0]) = ends[0] then ▷ omit in tier 1
5 Empty the cache.
6 Flush the other, nondepleted run.
7 return ▷ stops Algorithm 4.1
8 end if
9 curr[0] ← seqread_get(curr[0], readers[0])

10 else
11 cache[𝑖++] ← *curr[1]
12 curr[1] ← seqread_get(curr[1], readers[1])
13 end if
14 end for

being independent of the exact implementation of sequential readers and possible future changes
to them. Similarly, calls to seqread_get were reduced by manually advancing the pointers
to current elements as long as the ends of the first buffer halves were sufficiently far away.
Ultimately though, even larger speedups are achievable by implementing an own sequential
reader which can be inlined. The simplest way to do so is to duplicate the driver source file
seqread.inc and have it be part of the same translation unit.1 The speedup through inlining
is significant. For example, with CACHE_SIZE = 1024, SEQREAD_CACHE_SIZE = 512, QuickSort
as WRAM sorting algorithm, and 219 uniformly distributed 32-bit integers, a MergeSort with
inlined sequential readers achieves a speedup of 1.4 over a MergeSort where sequential readers
are used as is, that is with function calls.

A drawback of the two-buffer system is that data are loaded twice. Since it is a precondition
for runs to be aligned to 8 B and since elements are either 32 bits or 64 bits large, it is assured
that the last element in the first buffer can never extend into the second half. Hence, a natural
optimisation is to regard two consecutive sequential-read buffers as a singular one. New data
is loaded only when the pointer to the current element reaches the end of the second original
buffer. However, the two-buffer system is intrinsic to __builtin_dpu_seqread_get, that is the
function used by seqread_get, and we are unaware of any alternative C function to it. For this
reason, inline assembly must be employed to help adapt to the new buffer sizes. This includes
changing the carry bit condition, the amount of MRAM data read, and the number of bytes by
which a pointer to a current element is reset.

1. The BSD-style licence of the driver permits modification and redistribution of its files given proper credits.
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1 add rcurr, rcurr, 8, nc10, .LABEL
2 add rreader, rstack, –120
3 lw rmram, rreader, 4
4 add rmram, rmram, 1024
5 sw rrdr, 4, rreader
6 lw rwram, rreader, 0
7 ldma rwram, rmram, 255
8 add rcurr, rcurr, –1024
9 .LABEL:

// curr ← curr + 8; jump if no 10th carry bit
// get address of reader in the WRAM stack
// load MRAM address of reader
// MRAM address ← MRAM address + 1024
// store new MRAM address in reader
// load buffer address of reader
// load (255 + 1) × 8 bytes from the MRAM
// curr ← curr – 1024

(a) The assembler code generated for __builtin_dpu_seqread_get. ´Line 2 is omitted in half of the cases,
namely when the address of the reader is already stored in a register.

1 add rcurr, rcurr, 8, nc11, .LABEL
2 add rmram, rmram, 2048
3 ldma rwram, rmram, 255
4 add rcurr, rcurr, –2048
5 .LABEL:

// curr ← curr + 8; jump if no 11th carry bit
// MRAM address ← MRAM address + 2048
// load (255 + 1) × 8 bytes from the MRAM
// curr ← curr – 2048

(b) The handwritten assembler code.

Figure 4.3. Comparison of the assembler code of the function __builtin_dpu_seqread_get and
the improved assembler code, which is handwritten. In both cases, elements are 64 bits large and
SEQREAD_CACHE_SIZE is set to 1024. The flags nc10 and nc11 are true if and only if the respective
carry bit is not generated. Only if a flag evaluates to true, a jump to the specified label is performed.

A closer look at the original compilation, as shown in Fig. 4.3a, reveals more savings potential.
Despite being constant, the WRAM address of the sequential-read buffer is loaded from the
struct representing the reader (ln. 6) whenever new data need to be loaded. The MRAM
address stored in the reader is not only loaded (ln. 3) but also stored (ln. 5) after being set to the
new value. In exactly half of the instances where this assembler code appears, even the address
of the reader struct itself first needs to be loaded from the stack (ln. 2), because the register
into which it is loaded gets overwritten thereafter. These four load and store instruction can
be cut by abandoning structs to represent the two readers used and employing two arrays
of length 2, one for the buffer addresses and one for the MRAM addresses. As a consequence,
these four addresses are kept permanently within registers without ever being overwritten,
making the inline assembler code, as shown in Fig. 4.3b significantly shorter— admittedly, the
savings are less than the reduced number of lines suggests, for the DMA dominates the runtime
in this piece of code.

Next to seqread_get, more optimisation potential is hidden in the function seqread_init,
which is called once for each sequential reader before a new pair of runs is merged. This
function checks whether the MRAM address to which a sequential reader is set is already in the
buffer. Since sequential readers are always initialised to the beginnings of runs and the runs are
too long, this check is always negative and can be omitted. Moreover, recall that the original
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function divides the MRAM into pages which begin at multiples of SEQREAD_CACHE_SIZE. This
means that a run may begin in the middle of a page so the preceding, uninteresting data must
be loaded as well. Since runs are aligned to 8 B, the function seqread_init can load from the
first byte of the run onwards directly using mram_read. We can only speculate as to why the
original function seqread_init did not simply round the given MRAM address down to the
next multiple of eight but instead bothered with computing the page boundaries.

The MergeSort with fully optimised sequential readers achieves a speedup of 1.59 over the
MergeSort with regular sequential readers and of 1.14 over the MergeSort with the inlined ones.
This little gain despite the halved data transfers is testament to the dominance of computations
on the runtime of MergeSort.

To conclude, a bug present in the regular sequential reader shall be mentioned. Recall that
the MRAM is divided into pages and that always two whole pages are loaded, which may lead to
unneeded data being loaded at the beginning by seqread_init. The bug occurs if one accesses
data within the very last page of the MRAM since the regular sequential reader attempts to
load the following, nonexistent page as well. This results in a DMA fault and an abortion of
the execution. That is why the optimised sequential reader retains the page model in spite of
unnecessary transfers, for in combination with only one page being loaded, a DMA fault never
occurs. Such DMA faults are also a reason why the first tier cannot continue when reaching
the address early_end, that is, why ln. 3 of Algorithm 4.1 contains a <-sign and not a ≤-sign.
Otherwise, it might be the case that all remaining elements of the less run get merged back to
back, making even the optimised sequential reader load a non-existent page in the last iteration.

4.3.3. Evaluation of the Performance

With only a single tasklet computing, the optimal parameter choice is clearly to set CACHE_SIZE
and SEQREAD_CACHE_SIZE to the maximum value in order to minimise DMAs. Employing
eleven tasklets is profitable despite limiting the possible values for the parameters severely,
as the pipeline is utilised fully then, allowing to execute more instructions at the same time.
Comparing the runtimes of a sole tasklet performing an MRAM MergeSort and of a tasklet with
ten other ones working concurrently shows an increase of the runtime below the ten percent
mark. This tiny increase is owed to multiple tasklets performing DMAs at the same time, stalling
all involved tasklets but one since data transfers happen sequentially. Employing twelve tasklets
not only makes simultaneous DMAs more frequent, it also increases the effective execution
time of a single instruction from eleven cycles to twelve cycles. The effect is dampened by the
latency hiding, as tasklets performing a DMA are suspended. Of course, using more than eleven
tasklets may also be more convenient from an algorithmic point of view. For this reason, we
will look at the influence of different values for CACHE_SIZE and SEQREAD_CACHE_SIZE with
eleven, twelve and sixteen tasklets in this section. Please note that UNROLL_FACTOR is always
set to eight and cannot be set greater, for the kernel would, otherwise, not fit within the IRAM
anymore. Also, MAX_FILL_LEVEL is always set to CACHE_SIZE / sizeof(T).

Since the main purpose of the sequential MRAM MergeSort is being a component of the
parallel MRAM MergeSort, measurements are restricted to the maximum amount of data which
the MRAM can hold. The parallel MergeSort is essentially a full-space MergeSort, needing
auxiliary space of the same size as the input. As the total size of the MRAM is 64MiB, the total
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Tasklets CACHE 4 × SEQREAD_CACHE

512 1024 2048

11 256 1095 1103 1083
512 1090 1048 1065
1024 1065 1051 1018

12 256 1052 1067 1049
512 1048 1009 1032
1024 1027 1013 983

16 256 994 969 958
512 1002 964 945
1024 971 981 946

(a) 32-bit integers (𝑛 = 223/Tasklets)

Tasklets CACHE 4 × SEQREAD_CACHE

512 1024 2048

11 256 800 796 772
512 781 731 745
1024 752 728 693

12 256 785 778 752
512 765 713 725
1024 732 708 674

16 256 770 714 683
512 752 695 662
1024 707 692 655

(b) 64-bit integers (𝑛 = 222/Tasklets)

Table 4.1. Runtimes of the sequential MRAM MergeSort in hundred thousand cycles for different
values of CACHE_SIZE and SEQREAD_CACHE_SIZE on 32MiB of uniformly distributed inputs. The
input is divided evenly amongst the eleven to sixteen tasklets, which sort their proportion of the
input concurrently. Measurements represents the means of the maximum runtimes, that is the
wall-clock times.

input size is capped at 32MiB. Although the logging buffer of a DPU resides in the MRAM,
this buffer is not created if no use of printf, puts, and putchar is detected in the program.
Therefore, the entirety of the MRAM is indeed freely usable.

Table 4.1 shows the runtime of the sequential MergeSort for different values of CACHE_SIZE
and SEQREAD_CACHE_SIZE. The number of tasklets is eleven, twelve, and thirteen, and each
tasklet is assigned the same proportion of the input, which is 223 and 222 elements for 32-bit
and 64-bit integers, respectively. Whilst the measurements were conducted on a uniform
input distribution, we confirmed that the general observations hold true for the other input
distributions as well. We opt to show the mean of the maximum runtimes of individual tasklets,
that is the wall-clock times, since tasklets have to wait for each other in the parallel MergeSort.
The difference between maximum and average runtimes is barely noticeably, however, being in
the magnitude of one per mille for deterministic input distributions and in the magnitude of
one per myriad for the random ones.

In most cases, it holds that the larger caches and buffers are, the faster the execution is. This
suggests that being possibly stalled for longer is outweighed by the fewer occurrences of DMA
overheads, especially when many tasklets are present. Also, the larger one of the parameters is,
the greater the gain from enlarging the other one tends to be. The speedup has a tendency to be
greater for 64-bit integers than for 32-bit integers. Still, some exceptions to these observations
appear. For example, with sixteen tasklets, CACHE_SIZE = 1024, and 32-bit integers, doubling
the combined size of two sequential-read buffers from 512 B to 1024 B increases the runtime
by around 1 %. In summary, though, it is reasonable to set all parameters to the largest values
allowed for by the limited WRAM, that is CACHE_SIZE = 1024 and SEQREAD_CACHE_SIZE = 512.
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Figure 4.4. Mean of the wall-clock times of concurrently executed MRAM MergeSorts on all
benchmarked input distributions and data types. Sixteen tasklets were employed, each sorting 219

many 32-bit integers and 218 many 64-bit integers. Starting runs are formed using QuickSort.

As final remark to Table 4.1, it should be noted that the reduction of the runtime through more
tasklets is solely owed to the log-linear runtime of MergeSort and individual tasklets having to
sort fewer elements. Indeed, the effect of the overfull pipeline becomes apparent either when
computing the normalised runtimes of Table 4.1 or, simpler, when looking at Table B.1 where
the number of elements sorted by each tasklet is kept constant.

Next, we look at the performance of the sequential MergeSort, both in a half-space and a
full-space variant, across all benchmarked input distributions. Even though the parallel sorting
algorithm presented in Section 4.4 is a type of MergeSort, its performance is improved by
forgoing stability. Thence, it makes sense to analyse the performance of the sequential MRAM
MergeSort with both QuickSort and MergeSort as WRAM sorting algorithms used during the
formation of the starting runs. With QuickSort, Fig. 4.4 shows that like its WRAM counterpart,
the full-space MRAM MergeSort works the fastest on sorted inputs, which is because one of
the runs in each pair of runs is flushed in its entirety without overhead from comparisons and
elementwise moves. Reverse sorted inputs are sorted slower despite the same flushing pattern.
This is explicable through the worse performance of QuickSort — or, rather, InsertionSort — on
reverse sorted inputs. The same phenomenon occurs with WRAM MergeSorts, but there, the
influence of InsertionSort on the total runtime is much higher because of the shorter inputs,
leading to this input distribution being their worst case. Almost sorted inputs are also sorted
slower, however, this is because more elements need to be compared before non-depleted runs
can be flushed: When a pair of runs is merged, one of them contains mainly little elements,
whereas the other one contains mainly great elements. If the former run contains just one
great element, it will be merged only almost entirely at first. Upon reaching the one greater
element, some elements of the latter run are merged before the last element of the other run
can finally be merged and a cheap flush be performed. Late flushes become more frequent with
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uniform and Zipf’s input distributions, explaining why they former constitutes the worst case.
The ranking of the input distributions stays about the same when using MergeSort instead
of QuickSort to form the starting runs with a notable exception. For the WRAM MergeSort,
reverse sorted inputs constitute the worst case by such a wide margin that they become the
worst case for the MRAM MergeSort, too, as shown in Fig. B.1.

For the half-space MergeSort, the picture is different. Only on sorted inputs does the half-
space MergeSort manage to beat its full-space counterpart, and it falls behind on all other input
distributions decisively. This is because copying the first runs has become too costly due to
the DMAs, and not having to flush the second runs yields a considerable advantage only on
sorted inputs. In conclusion, merging WRAM data is the fastest with the half-space variant,
while merging MRAM data is the fastest with the full-space variant.
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4.4. Parallel MergeSort

A simplistic way to parallelise MergeSort is the following: Let the number of tasklets be a power
of two and have the tasklet identifiers start from zero. The whole input array is divided into as
many shares of equal length as there are tasklets, and each tasklet sorts a share sequentially
using the MRAM MergeSort of Section 4.3 to form starting runs. Once finished, Tasklet 𝑡
with 𝑡 mod 2 = 1 informs Tasklet 𝑡 − 1 that it is finished with sorting its share and suspends
itself. Tasklet 𝑡 − 1 merges its own share and that of Tasklet 𝑡 into a bigger run. Once finished,
Tasklet 𝑡 with 𝑡 mod 4 = 2 informs Tasklet 𝑡 − 2 that it is finished with sorting the run and
suspends itself. Then, Tasklet 𝑡 − 2 merges its run with that of Tasklet 𝑡. This scheme continues
until the last round where the two remaining runs are sorted by Tasklet 0.

The bottleneck is the sequential execution of each merge which eventually leads to a single
active tasklet. Even with infinite many processors, this simplistic parallel MergeSort can
achieve a theoretical parallel speedup2 of at most Θ(log 𝑛). We implement an alternative by
Cormen et al. [10] whose maximum theoretical parallel speedup is Θ(𝑛/log2 𝑛). Advantageously,
Algorithm 4.1 for merging MRAM data can be reused without fundamental changes when
adapting this parallel MergeSort to DPUs. Also, the number of synchronisation points is
logarithmic in the number of tasklets only, and the time which each synchronisation takes is
insignificant compared to the total runtime.

4.4.1. Presentation of Key Aspects

The parallel MRAM MergeSort is essentially a full-space MergeSort, meaning it needs an
auxiliary array of the same size as the input array and the two arrays switch roles after each
round. The parallel merge procedure (Fig. 4.5) operates on arbitrary runs, that is, it is no longer
required that two runs be neighboured when merging. Likewise, the output location is arbitrary
now, too, and not related to the indices of the two runs. Please note that the algorithm presented
here is not stable, but we will propose a stabilised variant in the outlook.

Suppose that there are but two tasklets and both have formed a starting run using the
sequential MRAM MergeSort. One of the tasklets is now temporarily suspended, whilst the
other one determines which of the runs is longer. Then, it determines the median of the longer
run, which will act as pivot element dividing the longer run into a front half and a back half.
The pivot is used to find an index 𝑖 which separates the shorter run into a front half and a back
half such that any element with index 𝑖′ < 𝑖 is not greater than the pivot and any element with
index 𝑖′ ≥ 𝑖 is at least as great as the pivot. Finding such an index 𝑖 can be implemented with a
binary search. The elements in both front halves are at most as great as the pivot so they can
go to the front of the output run. This means that the position of the pivot can be calculated
by taking the output location and offsetting it by the combined length of the two front halves.
Now, the front halves of both runs can be merged to the positions in front of the pivot using a
sequential merge procedure, and the back halves can be merged to the positions behind the
pivot. Since these two merges affect distinct elements and addresses, they can be performed in
parallel by the two tasklets.

2. The parallel speedup 𝑆 of a parallel algorithm 𝐴 is defined as the ratio t1(𝐴)/t𝑝(𝐴) of its wall-clock time t1(𝐴)
when run with one processor and of its wall-clock time t𝑝(𝐴) when run with 𝑝 processors.
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Figure 4.5. A parallel merge of two runs. The first run is the longer one, so its median 𝑝 is chosen
as a pivot which is used to divide the shorter run. Afterwards, the pivot is moved to its output
location. The two front halves of the runs are assigned to one tasklet and are merged to the positions
in front of the pivot. At the same time, the two back halves of the runs are merged by another
tasklet to the positions behind of the pivot. [10, Figure 27.6]

The two tasklets do not merge the same number of elements necessarily, but the workloads
cannot differ by a factor greater than three. The longer run has a length of at least 𝑛/2 elements
and is divided into two halves with at least 𝑛/4 elements each due to the pivot being the median.
Thus, both tasklets are guaranteed to merge at least 𝑛/4 elements. The shorter run has a length
of at most 𝑛/2 elements. In the worst case, the pivot is either strictly less or strictly greater
than all elements in the shorter run, meaning the shorter run is divided at its beginning or end,
respectively, and is merged in its entirety by one of the tasklets. This means that each tasklet
merges at least 25 % and at most 75 % of the elements.

The parallel MergeSort can be generalised to work with more than two tasklets. If there are,
for example, four tasklets, then Tasklets 0 and 1 merge their runs in parallel, as do Tasklets 2
and 3. Then, Tasklet 0 partitions the resulting two runs and assigns their back halves to Tasklet 2,
so that both Tasklet 0 and 2 can partition their particular halves again and merge in parallel
with Tasklets 1 and 3, respectively. For simplicity, the number of tasklets is always a power of
two in this Section 4.4.

Communication & Synchronisation The communication network can be visualised as a
forest of binomial trees. During the first parallel merge, Tasklet 1 informs Tasklet 0 about being
finished with sorting (bottom-up communication), and Tasklet 0 informs Tasklet 1 about being
finished with partitioning (top-down communication). Likewise, Tasklet 3 and 4 communicate,
Tasklets 5 and 6, and so on. At the beginning of the second parallel merge, Tasklets 1, 2, and 3
inform Tasklet 0 about being finished with sorting, and Tasklet 0 informs Tasklet 2 about
being finished with partitioning. Then, both tasklets partition again and inform Tasklet 1 and 3,
respectively. This bidirectional communication scheme is expanded for the third and fourth
parallel merge if those exist. We implemented the identification of communication partners
through bitwise logic on tasklet identifiers.

To inform tasklets on which elements they have to sort, there is a global WRAM array
whither the division points indices are written by partitioning tasklets. To inform tasklets on
when they are finished with sorting or partitioning, tasklets employ handshakes. Handshakes
allow for bilateral communication, which is enough for parallel MergeSort. A tasklet can
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call handshake_wait_for(id) and gets suspended until Tasklet id calls handshake_notify().
Likewise, if Tasklet id calls handshake_notify(), it gets suspended until some other tasklet
calls handshake_wait_for(id). If two or more tasklets wait for the same tasklet, an error
is thrown and the execution halts. Handshakes render bottom-up communication straight-
forward: Each non-root of a communication tree calls handshake_notify when done with
sorting, whereas the root calls handshake_wait_for for all of its successors. Due to workload
imbalances, some tasklets will try to shake hands earlier than others and will have to wait.
Because they are suspended while waiting, they free up the pipeline, thus accelerating the
remaining tasklets. Top-down communication is also straightforward: After having shaken
hands, each non-root immediately calls handshake_notify again to get suspended once more.
The root repeatedly partitions the runs, writes the division points to the global WRAM array
mentioned earlier, and calls handshake_wait_for to resume the next tasklet.

Binary Search The binary search is conventionally implemented, meaning elements are
loaded individually from the MRAM and there is no mechanism to load a block of data via
mram_read for a search within the WRAM once the search interval has been narrowed down
enough. Whilst we did implement such a two-tier binary search, the speedup is below measure-
ment uncertainty. The reason is that the binary search is executed a few times in total only, so
its impact on the total runtime is minuscule. For the sake of code simplicity and kernel size,
the WRAM search tier has been removed. Reducing the kernel size is a valid concern since the
many unrolled loops bloat the kernel and only a handful of bytes in the IRAM remain free.

Alignment In Section 4.3, it is required that all sizes and positions be multiples of eight even
if the input consists of 32-bit elements. This can be ensured during the formation of starting
runs by dividing the input accordingly and introducing dummy variables if need be. Thereafter,
however, there is no control over any alignment whatsoever because the sizes of run halves are
arbitrary. This raises the need for modifications to the sequential merge procedure.

Before beginning the first tier, the alignment of the output location must be checked. If it
is unaligned, the less of the first elements of both runs is written to the output location. As a
result, the updated output location is aligned to 8 B again, meaning the first tier can proceed as
normal since emptying the cache through mram_write is unproblematic.

At first, the second tier proceeds as normal, too. Once the less run is depleted, the cache
may contain an odd number of elements, so the current element of the greater run is written to
the cache before emptying it. However, if there are elements still remaining in the greater run,
flushing the remainder becomes more complicated than in Section 4.3. There, it was sufficient
to loop over the remainder in the MRAM, write it to the cache, and move it to the respective
output location. Now, the current output location is still aligned to 8 B but it may very well be
that the first element of the remainder has an unaligned address. This indicates a mismatch,
for all unaligned elements must be transferred to an aligned address and all aligned elements
to an unaligned one. When calling mram_read and mram_write, the alignment of elements
within the MRAM and within the WRAM must be the same. If such an instance is detected,
the remainder is loaded blockwise from the MRAM into the cache. There, a loop shifts each
element forward by one position, resolving the mismatch. Afterwards, the shifted elements can
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Figure 4.6. Mean parallel speedups of MergeSort on all benchmarked input distributions and data
types with 32MiB of data. The grey line indicates an ideal, linear speedup which is capped at 11.

be written to the output location. Since only an even number of elements can be moved via
mram_write, it may be necessary to transfer a single item individually at the end in case that
the remainder had an odd length.

Writing single 32-bit elements to the MRAM is not threadsafe, since, internally, eight bytes are
read to a hidden WRAM cache, partially modified, and written back to the MRAM. Therefore,
an atomic write, which utilises costly virtual mutexes, must be performed.

4.4.2. Evaluation of the Performance

The parallel speedup of the MergeSort on 32MiB of data is shown in Fig. 4.6. An ideal parallel
speedup would be linear in the number of tasklets but capped at 11 or, rather, slightly above
because of DMA latency hiding. For inputs with a uniform or Zipf’s distribution, the measured
speedup is very close to the optimum, reaching values above 10 for both 32-bit and 64-bit integers.
This is owed to workloads tending to be balanced naturally and tasklets being removed from
the pipeline once they are finished. For all other inputs, the parallel speedup is approximately
between 7 and 9 with 32-bit integers and between 6 and 8 with 64-bit integers— a consequence
of workloads becoming more unbalanced. This shall be illustrated by sorted inputs: In the
last round, two runs remain. When Tasklet 0 performs the first partitioning step, the pivot
divides the longer run into two equally long halves. However, the pivot is strictly less or greater
than any element in the shorter run, meaning the shorter run keeps its length of about 𝑛/2
many elements as the division point is at one of its ends. Such unbalanced divisions carry on to
further partitioning steps. When the number of tasklets is sixteen, the ratio between the least
and the greatest number of assigned elements in the last round of parallel merging is about 2.3
for zero-one inputs and 4 for the three kinds of sorted inputs.

Figure 4.7 shows the wall-clock times. The measurements are subdivided into the three
phases of the parallel MergeSort, that is the sequential WRAM phase, the sequential MRAM
phase, and the parallel MRAM phase. On the one hand, most results are unsurprising. The
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Figure 4.7. Mean wall-clock times of the parallel MergeSort, broken down into its three phases, on
all benchmarked input distributions and data types with 32MiB of data. The first phase comprises
sequential sorting in the WRAM, the second one sequential sorting in the MRAM, and the third one
parallel sorting in the MRAM.

sorted, reverse sorted, and zero-one input distribution are sorted quickly as they lead to short
first and second phases, whilst the uniform and Zipf’s input distribution make these two phases
last longer. The third phase always takes approximately the same amount of time, implying
that workload imbalances are cancelled out by earlier flushes, although the effect is weaker for
64-bit integers where computation is more costly.

Almost sorted inputs, on the other hand, are clear outsiders because of the remarkably long
third phase, making them the worst case amongst all benchmarked ones. Despite the long
runtime, the parallel speedup is about the same as for sorted and reverse sorted inputs. Indeed,
they all share equal or nearly equal workload imbalances. The explanation for the third phase
being so long is the same as the one given in Section 4.3.3 with respect to the sequential Merge-
Sort: A few great elements placed in a run of mostly little elements delays flushes, and the
longer the runs become, the likelier it is for a run to contain an overly great element.
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Conclusion

In this thesis, we engineered several sequential and parallel integer sorting algorithms utilising
in-memory processing (PIM) on UPMEM-based DRAM processing units (DPUs). DPUs are
threaded general-purpose processors which reside next to the memory banks of DRAMmodules.
Due to this spatial proximity, the latency of memory accesses is greatly reduced. However,
the computational capability of a DPU is low. The memory hierarchy of a DPU is three-tiered,
entailing registers, a small but fast scratchpad memory called Working RAM (WRAM) and a
larger but slower Main RAM (MRAM).

In Chapter 3, we focused on sequentially sorting data which fits entirely into the WRAM.
A crucial means to optimise the performance of a DPU algorithm proved to be the reduction
of the instruction count, as all instructions are executed in the same amount of time and
WRAM accesses are uniform. Often, this included the exploitation of sentinel values to reduce
bounds checks and loop unrolling to lessen loop overheads. We found QuickSort to deliver a
well-rounded performance across all benchmarked input distributions. The performance by
MergeSort is strong as well, mostly following suit and in some cases even surpassing QuickSort.
HeapSort proved to be uncompetitive. Both QuickSort and MergeSort make use of InsertionSort,
which we found to perform well on short inputs with about 16 elements or fewer.

In Chapter 4, we focused on sorting data which have to be stored in theMRAM for size reasons.
We adapted MergeSort for sequential execution by a single tasklet and parallel execution by an
entire DPU, designing an elaborate two-tier merge procedure to lower the instruction count. An
additional challenge was the reuse of allocated memory and the management of data transfers
between the MRAM and the WRAM. For the latter, UPMEM provides a software utility called
sequential reader, which we optimised to gain a further speedup of 1.6. In case of the parallel
sorting algorithm, communication and synchronisation were implemented using sharedmemory.
The parallel speedup achieved ranges from nearly hitting the optimum to reaching just half of
it, depending on the input distribution.

There is still room for improvement of the proposed sorting algorithms. The compiler
produces suboptimal code in quite a few instances of which we have noted several throughout
this thesis. QuickSort suffers themost from this and its current implementation has shortcomings
whose removal may culminate in the use of inline assembler. A more optimised QuickSort might
manage to beat MergeSort more clearly. The compiler issues were an additional reason not to
design a QuickSort which works on MRAM data. We conjecture that such an MRAM QuickSort
would be very performant due to the uniform cost of instructions and memory accesses. Our
optimised sequential reader could aid with the latter, as it is trivially expanded to support the
two different directions in which QuickSort reads data. Furthermore, own cursory experiments

63



Chapter 5. Conclusion

have shown that sorting networks are a strong contender to InsertionSort. More suggestions
concerning the sequential sorting algorithms can be found in Section 3.6. In case of the parallel
sorting algorithms, there are two main areas needing improvement: Load imbalances lead to
a worse speedup on some input distributions, and the stability property is lost despite being
based on MergeSort. Therefore, we propose the following methods as possible future changes
to the parallel merge method.

Load Imbalances Recall that the two halves assigned to a tasklet contain between 25 % and
75 % of the elements of the respective runs, which can lead to workload imbalances. A more
even workload of 50% would be achieved if the median of the merged run were chosen as pivot
and the runs divided accordingly. Finding the two positions where the runs should be divided
according to this common median requires a modification to the binary search. Two search
intervals are set up, one for either run. Then, the medians of both runs are determined. If this
does not produce valid division points, then one of the runs has more little elements in its front
half than the other run. This means that the front half of this run must become longer and the
front half of the other run shorter. Therefore, the search intervals can be narrowed down to the
righthand side of the run with the less elements and to the lefthand side of the run with the
greater elements. The process can now be repeated until two valid division points are found.

Stability The parallel merge method is unstable because one or both runs may contain the
pivot value multiple times and a division point may separate the duplicates. Therefore, it must
be ensured that all duplicates of a run remain within the same half. To do so, once the median
is determined, it is checked if the left neighbour of the median has the same value. If so, there
may be even more duplicates so a binary search is employed to find the earliest occurrence of
the pivot value within the longer run. This earliest occurrence marks the division point for the
longer run. Similarly, the binary search in the shorter run now has to find the earliest possible
division point, too.

Currently, the implementations of the sorting algorithms support only 32-bit and 64-bit
integers. Supporting shorter integers or compound data types would probably complicate
memory alignment, but ultimately, the performance should remain largely the same. Supporting
floating point numbers, however, would likely hurt the performance irremediably. The reason
is that DPUs have no hardware support for floating point arithmetic, so comparisons between
floating point numbers require emulation in software.

Then next greater step in sorting integers would be the employment of multiple DPUs. New
challenges for communication and synchronisation open up, as there is no direct communication
channel between DPUs, much less shared memory. Instead, any inter-DPU communication
must be overseen by a host CPU. Moreover, DPUs are grouped together, and the host cannot
access a DPU until all DPUs of its group have finished executing.
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Appendix A.

Further Measurements on
Sorting in the WRAM

This appendix contains a comprehensive collection of measurements expanding the content of
Chapter 3. Every measurement was repeated a thousand times with the sorting algorithms in
their default configuration unless explicitly noted otherwise:
InsertionSort explicit sentinel value
ShellSort explicit sentinel values; step sizes ℎ = (1, 6) for inputs with at most 64 elements and

ℎ = (1, 4, 17) for longer ones
HeapSort top-down for 32-bit integers; bottom-up with swap disparity for 64-bit integers
QuickSort fallback threshold of 18 elements; random medians as pivots; prioritisation of right-

hand partitions over left-hand partitions; iterative for 32-bit integers; recursive for 64-bit
integers; Handling (5)

MergeSort half-space; starting run length of 14 elements
Some figures include tinted areas around the plots. These denote the three-sigma range, that is
the 99.7 % confidence intervals.
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A.1. InsertionSort
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Figure A.1. An extension to Fig. 3.2. The date size is 32 bits.
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Figure A.2. An extension to Fig. 3.2. The date size is 64 bits.
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A.2. ShellSort
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Figure A.3. An extension to Fig. 3.3. Instead of total runtimes, the speedups over InsertionSort are
given for better clarity. The date size is 32 bits.
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Figure A.4. An extension to Fig. 3.3. Instead of total runtimes, the speedups over InsertionSort are
given for better clarity. The date size is 64 bits.
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Figure A.6. A repetition of Fig. 3.4. The date size is 32 bits. The input distribution is the uniform
one.

71



Appendix A. Further Measurements on Sorting in the WRAM

0.5 0.55 0.6 0.65 0.7
/
7
9
11
13
15

1.3 1.4 1.5 1.6 1.7 1.8
/
7
9
11
13
15
17

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
/
7
9
11
13
15
17

3.5 4 4.5 5 5.5
/
7
9
11
13
15
17

6 8 10 12
/
7
9
11
13
15
17

8 10 12 14 16 18 20
/
7
9
11
13
15
17

Input Length n = 16 Input Length n = 32

Input Length n = 48 Input Length n = 64

Input Length n = 96 Input Length n = 128

Runtime [104 Cycles]

ℎ 2

ℎ1 = 3 ℎ1 = 4 ℎ1 = 5 ℎ1 = 6 ℎ1 = 7 ℎ1 = 8 ℎ1 = 9

Figure A.7. An extension to Fig. 3.4. The date size is 64 bits. The input distribution is the reverse
sorted one.
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Figure A.8. An extension to Fig. 3.4. The date size is 64 bits. The input distribution is the uniform
one.
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A.3. HeapSort
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Figure A.9. An extension to Fig. 3.5. The date size is 32 bits. Beware of the different 𝑦 axis for the
zero-one input distribution.
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Figure A.10. An extension to Fig. 3.5. The date size is 64 bits. Beware of the different 𝑦 axis for the
zero-one input distribution.
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A.4. QuickSort
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Figure A.11. An extension to Fig. 3.8 with two different methods to selects pivots. The date size is
32 bits.
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Figure A.12. An extension to Fig. 3.8 with two different methods to selects pivots. The date size is
64 bits.
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Figure A.13. A repetition of Fig. 3.7. The date size is 32 bits.
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Figure A.14. An extension to Fig. 3.7. The date size is 64 bits.
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A.5. MergeSort
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Figure A.15. An extension to Fig. 3.10. The date size is 32 bits.

80



A.5. MergeSort

20
30
40
50
60

20
30
40
50
60

20
30
40
50
60

75

110

145

180

75

110

145

180

75

110

145

180

30
50
70
90
110

30
50
70
90
110

30
50
70
90
110

30
50
70
90
110

30
50
70
90
110

30
50
70
90
110

50

80

110

140

50

80

110

140

50

80

110

140

16 64 256 1024
50

80

110

140

16 64 256 1024
50

80

110

140

16 64 256 1024
50

80

110

140

Without Write-Backs With Write-Backs

So
rt
ed

Half-Space

R
ev

er
se

S.
A
lm

os
tS

.
Ze

ro
-O

ne
U
ni
fo
rm

Zi
pf
’s

Input Length 𝑛

Cy
cl
es

/(
𝑛l
b
𝑛)

Figure A.16. An extension to Fig. 3.10. The date size is 64 bits.
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Figure A.17. MergeSort with different starting run lengths. For starting run length ℓ, the input
lengths 𝑛 = 4𝑖 ⋅ ℓ + 1 with 𝑖 = 0, … , 4 were benchmarked. The date size is 32 bits.
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Figure A.18. MergeSort with different starting run lengths. For starting run length ℓ, the input
lengths 𝑛 = 4𝑖 ⋅ ℓ + 1 with 𝑖 = 0, … , 4 were benchmarked. The date size is 64 bits.
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Figure A.19. MergeSort with different starting run lengths. For starting run length ℓ, the input
lengths 𝑛 = 4𝑖 ⋅ ℓ + 1 with 𝑖 = 0, … , 3 were benchmarked. The date size is 32 bits.
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Figure A.20. MergeSort with different starting run lengths. For starting run length ℓ, the input
lengths 𝑛 = 4𝑖 ⋅ ℓ + 1 with 𝑖 = 0, … , 3 were benchmarked. The date size is 64 bits.
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Appendix B.

Further Measurements on
Sorting in the MRAM

This appendix contains a comprehensive collection of measurements expanding the content
of Chapter 4. Every measurement was repeated ten times with the sorting algorithms in their
default configuration unless explicitly noted otherwise. By default, CACHE_SIZE is set to 1024,
SEQREAD_CACHE_SIZE is set to 512, and WRAM QuickSort is used during the formation of
starting runs.
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B.1. Sequential MergeSort
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Figure B.1. An extension to Fig. 4.4 with both a stable and an unstable full-space MergeSort.
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B.1. Sequential MergeSort

Tasklets CACHE 4 × SEQREAD_CACHE

512 1024 2048

11 256 745 721 708
512 750 712 696
1024 723 724 692

12 256 782 759 749
512 787 750 735
1024 763 762 732

16 256 994 969 957
512 1002 964 945
1024 971 981 945

(a) 32-bit integers (𝑛 = 219 per tasklet)

Tasklets CACHE 4 × SEQREAD_CACHE

512 1024 2048

11 256 544 513 498
512 533 499 480
1024 512 498 473

12 256 582 546 529
512 569 530 510
1024 544 527 502

16 256 770 714 683
512 752 695 662
1024 707 692 655

(b) 64-bit integers (𝑛 = 218 per tasklet)

Table B.1. An extension to Table 4.1. The input size per tasklet is fixed to 2MiB.
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Acronyms

API application programming interface . . . . . . . . . . . . . . . . . . . . . . . . . 9

CPU central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DDR4 Double Data Rate 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DIMM Dual In-Line Memory Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DMA direct memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

DPU DRAM processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

DRAM Dynamic RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

GPU graphics processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

IRAM Instruction RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

MRAM Main RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

PIM in-memory processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

PnM near-memory processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

PuM processing using memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

RAM random-access memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

RISC reduced instruction set computer . . . . . . . . . . . . . . . . . . . . . . . . . . 7

SDRAM Synchronous DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

WRAM Working RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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